
 Universtiell 1 Mjekesise Tirane
 FAKULTETI I MJEKËSISË DEPARTAMENTI I PEDIATRISË

DISERTACION

I PARAQITUR NGA

Z. LAURANT KOLLÇAKU

PËR MARRJEN E GRADËS SHKENCORE DOKTOR

SPECIALITETI: PEDIATRI

TEMA: DLABETI MELITUS TIP 1 NE MOSHËN PEDLATRIKE, KARAKTERISTIKAT EPIDEMIOLOGJKE, KLINIKE, IMUNOLOGJKE DHE SHOQËRIMI ME SËMUNDJE TË TJERA AUTOIMUNE.

MBROHET MË DATË \qquad / 2023 PARA JURISË

1. Prof. Anila Godo
2. Prof. Paskal Cullufe
3. Prof. Ferit Zavalani
4. Prof. Elizana Petrela
5. Prof. Asc. Dorina Ylli

KRYETAR
ANETTAR (OPONENT)
ANETTAR (OPONENT)
ANETAR
ANETAR

PARATHËNIE

Diabeti Melitus Tip 1(DMT1) ndikon ndjeshëm nẽ stilin e jetès se̊ fêmijès dhe familjes se tij, perbën një peshë të madhe ekononike pēr individin, farniljen, shërbimin e kujdesit shẽndetêsor dhe gjithẻ̉ shoqẻrinẻ. Për mể tepär, ritmi i lartẽ i rritjes sê shpeshtësisë né mbarë botën, e vendos DMT1 si një sêmundje me rëndësi të madhe të shëndetit publik për shkak tẽ rriskut tê rritur pèr zhvillimin e komplikacioneve, disfunksion the insufiçence tee organeve te ndryshme por edhe te trajtimit dhe monitorimit të tyre. Hiperglicemia kronike e diabetit shoqērohet me dëmtime afatgjata veçanêrisht me sēmundje kardiovaskulare, sëmundje renale, neuropati periferike, retinopati dhe invaliditet
Zhvillimi i komplikacioneve në pacientẻt me DMT' 1 mund të ngadalësohet duke trajtuar hipergliceminé për të arritur kontrollin e rreptē tē glicemisë nēpërmjet përdorimit të regiomeve intensive të insulinẽs, bashkē me terapinë nutricionale dhe aktivitetin fizik tē strukturuar.
Ekzistojnë sfida unike në kujdesin për fémijët dhe adoleshentēt the diabet që dallojnë kujdesin pediatrik nga ai adult, diferenca e dukshme nê madhěsinê e pacientēve, probleme té zhvillimit si mungesa e parashikueshmërisé sẽ marrjes nutricionale dhe nivelit tè aktivitetit tể fèmijēve tę vegiel, pamundësia pẽr tę komunikuar simptomat e hipoglicemise the probleme mjekësore si misku i rritur i hipoglicemise the ketoacidoze̊s diabetike (KAD). Pęr shkak tę kętyre konsideratave, gjatê menaxhimit tê fèmijěve me DMT 1 duhet tẽ merret parasysh mosha đlhe pjekuria e tyre.
DMT1 êshtề njẽ formê e diabetit qẻ kęrkon insulino-terapi giatẽ giithê jetěs. Rritja e njohurive mbi patogjenezěs sě diabetit tip 1 (i njohur mẽ parě si diabeti i varur nga insulina) ēshtë shoqēruar vazhdimisht me ndërhyrje pêr tē ngadalësuar procesin autoimune si pęrpjekje pęr teٌ vonuar ose parandaluar shfaqjen e hiperglicemisé. Megjithëse ruk ēshtë identifikuar ende njè strategji e suksesshme për parandalimin e diabetit tip 1, personat në misk tē lartē që mund të zhvillojnë diabet tip 1 mund tē identifikohen duke përdorur njè kombinim të markuesve imunologjik, gjenetik dhe metabolik.

DEDIKIM

Ky studim do tẽ kishte qenẽ shumẽ mẽ i veૈshtirę pa ndihměn e familjes dhe kolegěve tê mi . Dua tē shpreh mirēnjohjen time té thelle për kẻta bashkêpunêtorë qê mẻ kanẻ ndihmuar gjatẽ procesit tẽ kryerjes sê studimit doktoral.
Se pari, dëshiroj te falenderoj utheheqesin shkencor, Prof. Asc Donjeta Bali per ndihmẽ̃n e pakursyer ne̊ realizimin e tè gjithẻ hapave tẻ punimit doktoral, e cila me durimin dhe qetesine qee e karakterizon më ka ndihnuar dhe inkurajuar qē tee realizoj një studim me standarde akademike. Mendimet the sugjerimet e saj kane qenē shumë tē dobishme dhe ndihnnuese përr mua gjaté kryerjes së kêtij procesi kërkimor.
Sē dyti, një ndihmesë e çmuar kanè qenẽ the debatet profesionale me kolegët e mi, mbi problemet e hasura nẽ hapa tẻ caktuar tē studimit. Faleminderit për ndihmẽn dhe mbēshtetjen tuaj
Falënderim dhe mirënjohje pẽr bashkëshorten Anisa dhe vajzēn lris të cilat janẽ një kapital shumē i çmuar për mua.

Abstract

ABSTRAKT Diabeti mellitus tip 1 (DMT1) pẻrfaqéson njě sěmundje qẽ ka njé impakt stumẽ dimensional tek fémija i prokur, familjaret etij, sistemin shendetesor dhe githé shoqériné, duke pérfahirè pasojat né cilesiné e jetes, pasojat sociale dhe ekononike. Shoqérimi i DMT1 me njé séré komplikacionesh e bên edhe mé té Rritia e shpeshtésisė se DMT1 nẽ té gjithé botēn ka vẽnẻ nẻ̉ alarm sistemet senténdetẻsore tẻ cdo vendi. Nê Shqipêri tê dhennat lidhur me epidemiologjinẻ e DMT1 nê moshến pediatrike janẽ tẽ pakta. Nê ketẻ kuader ne ndémorém njê studim q̧ẽ perfshiu tě gjithẽ pacientet pediatrikê tẽ diagnostikuar nê ményré definitive me DMT1 prané Shérbimit tone gjaté periudhés 2010-2014. Né total 152 femije té moshés 0 14 vjeç u diagnostikuan me DMT1 giatę késaj periudhe dhe u përfstiné né studim. Pér pjesémarrésit u mblowhẻn tê dhẻnat e tyre bazẻ sociodemografike. Gjithashtu, u mblodhěn tẻ dhẻnat lidhur me historinẻ familjare per diabet, infeksionet e kaluara, stinën e lindjes dhe diagnozés sé DMT1, kohězgatjen nga fillimi i simptomave deri ne momentin e diagnozés dhe te dhenat per një numer té madh shenjash dhe simptomash klinike. Te gjithê fêmijet u ekzaminuan ne momentin e paraqitjes né sherbimin toné dhe mé pas u ndoqën pér nje periudhé deri nee 5 vjet pas vendogjes sé diagnozés pèr diga parametra laboratorike kryesore. Rezultatet e studimit sugjervan se mosha mesatare e femijeve me DMT1 estite 8.3 vjec, tre te katertat jetojnet ne zonat urbane dhe rreth 61% diagnostikohen giate vjeshtés dhe dimrit Koha mesatare e diagnozés se DMT1 éshte rreth 23 ditê, nga fillimi i simptomave, me njé variacion té madh nga 0 dite ne 90 dite. Triada klasike e DMP1 u has né pothuajse tê gíthé pacientet, kurse tabloja klinike ishte mjaft e pasur, ku dominojne prania e lodijes dhe pafuqise ne pothuajse 90% te tyre, distresi respirator, rēnkimet, dispnea, pérgumja, tě vjellat, etj. Prevalenca e ketoacidozěs diabetike (KAD) rezultoi 67.8% Nẽ pěrgithẽsi, fêmiję me DMT1 me KAD paraqitẻn njé profil klink dhe laboratorik ně mévyrê domethênęse mětę disfavorshěm krahasuar me fémijêt me DMT1 pa KAD. Prevalenca e KAD ishtẽ nẻ mëruyre domethénêse mê e lartê tek vajzat. Midis fémijève me KAD, prevalenca e KAD tê rêndè, modenuar dhe té letré rezultoi 38.6% a 15.9% dhe 29.5%, përkatésistt, bazuar nếpH venoz, ndérsa bazuar né niveline $\mathrm{HCO3}$ serike, prevalencat pērkatęse janẽ: $34.9 \%, 34.9 \%$ dhe 27.9% Ecuria e HbAlcnékohẻ Ęhté mě epafavorshme tek fęmijęt me DMT1 me KADkrahasuar me fénijet me DMT1 pa KAD. Niveli i vdekshmẻrisé nga KAD midis fęmijêve me DMT1 nê studimin tonê êshté 0.66% Midis pacientẽve nẻ studim, 71.20% rezultuan pozitiv per ac.anti GAD65 dhe 86.11% rezultuan pozitiv per ac anti LA2. Shpeshtèsia esêmundjeve autoimune bashkéshoqưuvese nê momentin e diagnostikimit tê DMT1 pêr heré tę pare dhe gjaté monitorimit tẻ tij ishte 25.65% ($39 / 152$): 17.76% semundje sutoimmme tẽ tiroides (SAT) dhe 7.9% sermindje celiake (SC), 64.1% ishin ferrra. Femrat dhe fèmijet me histori familjare DMT1 the DMT2 kishin 2.42 dhe 7.5 gjasa me shume per te zhvilluar stmundje autoimane krahasuar me mestikujt dhe femijet pa histori familjare pozitive, respeltivisht. Gjaté periudhes se studimit SAT dhe SC. u shfaqęn 2.54 dhe 2.19 vjet, respektivisht pas diagnostikimit té DMT1.Baruar né gietjet e ketij studimi, rekomandohet qêté ndèrmerren fushata ndérgjegiésuese pér prindérit né ményrè qê ata t'i njohin slipejt đhe drejt streujat dhe simptomat e DMT1, pasi kjo mund te coje né parandalimin e instalimit té KAD apo ne diagnozén dhe trajtimin e hershem tê tij. Pokéshtu, stafi i kujdesit shëndetésor duhet tê jetê vigilent lidhur me diagnozén potenciale tê DMT'1 tek fémijet, sidomos tek ata me shenjat dhe simptomat karakteristike dhe ato te evidertuara ne kete studim, si dhe te jene githnje vigilent per mundesine e pranise sé KAD.

Abstract

Type 1 diabetes mellitus (T1DM) has a multidimensional impact on the affected child, his family, the health system and society as a whole, including quality of life, social and economic consequences. The association of DMTI with a number of complications makes it even more important to lake measures for the prevention and proper management of this disease. The increasing frequency of T1DM worlowide has alerted the bealth systems of every country. In Albania, the information on the epidemiology of TIDM in pediatric age patients is scarce. In this context we undertook a stady that included all pediatric patients definitively diagnosed with DMT1 at our Service during the period 2010-2014. A total of 152 children aged $0-14$ years were diagnosed with TIDM during this period and were included in the study. Basic socio-demographic data were collected. In addition, information on family history, past infections, season of birth and diagnosis of T1DM, duration from onset of symptoms to the time of diagnosis, and data on a large inumber of clinical signs and symptoms was collected as well. All children were examined at the time of presentation to our service and then followed for a period of up to 5 years after the diagnosis for some key labocatory parameters. The results of the study suggested that the average age of children with TIDM is 8.3 years, three-quartery live in urban areas and about 61% are diagnosed during the fallwinter seazons. The average time of diagnosis of T1DM is about 23 days, from the onset of symptoms, with a large variation from 0 days to 90 days. The classic triad of T1DM was encountered in almost all patients, and the clinical picture was quite rich, dominated by the presence of fatigue in almost 90% of them, respiratory distress, groans, dyspnes, drowsiness, voniting, etc. The prevalence of diabetic ketoncidosis (DKA) was 67.8%. Overall, children with T1DM with DKA presented a significantly more unfavorable clinical and laboratory profile compared to children with TIDM without DKA. The prevalence of DKA was significantly higher among girls. Among children with DKA, the prevalence of severe, moderate, and mild DKA was $38.6 \%, 15.9 \%$, and 29.5%, respectively, based on venons pH ; whereas based on the serial HCO 3 level, the respective prevalences were: $34.9 \%, 34.9 \%$ and 27.9%. The performance of HBAI c over time is more unfavorable in children with TIDM with DKA compared to children with TIDM without DKA. The DKA mortality rate among children with T1DM in our study was 0.66%. Among patients, 71.26% and 86.11% resultel pozitiv for ac.anti GAD65, and anti IA2. respectively. Frequency of associated autoimmune disease at diagnosis of T1DM and during period of study were 25.65% (39/152): 17.70% autoimmune thyroid disease (ATD) AND 7.9% celiac disease celiake (CD); 64.1% were female. Females and children with family history for both T1D and T2D were significantly 2.42 , and 7.5 times more likely to have autoinmune disorders compared to males and children with no family history, respectively. ATD and CD developed 2.54 , and 2.19 y ears, respectively after TIDM diagnosis. Based on the findings of this study, it is recommended to undertake awareness campaigns for parents so that they recognize quickly and correctly the signs and symptoms of T1DM, as this may lead to the prevention of DKA installation or early diagnosis and treatment. Likewise, health care staff should be vigilant regarding the potential dingnogis of TIDM in children, especially those with classic signs and symptoms and those identified in this study, as well as always be vigilant about the possibility of the presence of DKA.

Keyworvs: Albania, diabetes mellitus type 1, diabetic ketoacidosis, epidemiology, children

TABELA E PËRMBAJTJES

Parathënie II
DEDIKIM III
ABSTRAKT IV
Abstract. V
Tabela e përmbajtjes VI
SHKURTIMET: IX
LISTA E TABELAVE X
LISTA E GRAFIKEVVE XII
KAPIT ULLI I. HYRJE 1
1.1 PËRKUFIZIMI 1
1.1.1 Diabetit Mellitus 1
1.1.2 Diabetit Mellitus Tipi 1 1
1.2 KLASIFIKIMI I DIABETIT MELLITUS 1
1.3 Karakteristikat Epidemiologike 4
1.3.1 Incidenca dhe prevalenca 4
1.3.2 Diabcti tip 1 nē botẽ 5
1.3.3 Variacionet gieografike 7
1.3.4 Faktorēt gienctik 7
1.3.5 Faktorest mjedisore 8
1.3.5.1 Gjerësia gjeografike 8
1.3.5.2 Dieta dhe ushqimet 9
1.3.5.3 Vitamina D dhe Ekspozim ndaj rrezeve ultraviolet B (UVB). 10
1.3.5.4 Faktori klimatik 11
1.3.5.5 Infeksionet virale 11
1.3.5.6 Imunizimi dhe Vaksinat 13
1.3.5.7 Faktorë giatē shtatzanisë dhe periudhës perinatale 13
1.3.5.8 Obeziteti (BMI e rritur). $(99,100)$ 13
1.3.5.9 Emigrimi 14
1.3.5.10 Sezoni dhe muaji i lindjes 14
1.3.5.11 Gjendja social-ekonomike 16
1.3.6 Seksi/ginia 16
1.3.7 Mosha 16
1.3.8 Rraca dhe etnia 17
1.3.9 Sērmundshmëria dhe vdekshmēria 18
1.3.9.1 Keto-acidoza diabetike. 19
1.3.9.2 Hipoglicemia 19
1.3.9.3 Disfunksioni konjitiv 19
1.3.9.4 Ulje ejetëgjatësisë 19
1.4 TENDENCA E INCIDENCẼS SË DMT1 20
1.4.1 Situta lidhur me diabetin tip 1 nê vendin tone 20
1.5. Patogieneza e diabetit melitus tip 1 20
1.5.1 Historia natyrale e diabet tip 1 20
1.5.2 Markuesit gienetik te diabetit tip 1 25
1.5.2.1 Gjenet HLA 25
1.5.2.2 Gjenet jo-HLA 28
1.6 Markuesit autoimun të diabetit tip 1 28
1.7 Markuesit metabolik 33
1.8 Karakteristikat klinike të prezantimit të diabetit melitus tip 1 të moshës 0-14 vjeç në Shqipëri 33
1.8.1 Prezantimi klasik pèr herě te pare (hiperglicemi pa acidozes) 34
1.8.2 Ketoacidoza diabetike 35
1.8.3 Prezantimi asimptomatik 42
1.9. Diagnoza e dibetit mellitus tip 1 ne fëmijët dhe adoleshentët: kriteret diagnostike. 42
1.10 Diagnoza diferenciale. 45
1.10.1 Diabeti tip 1 49
1.10.2 Diabeti tip 2 53
1.10.3 LADA (diabeti autoimun latent ně adultět) 53
1.10.4 MODY (diabeti me fillim nẻ adultetri i tẽ rinjve) 55
1.10.5 Shkaqe te tjera diabetit melitus 57
1.11 Sëmundjet autoimune shoqëruese të diabetit melitus tip 1 në fëmijët dhe adoleshentët. 57
1.11.1 Sēmundjet autoimune të tiroides (SAT) 58
1.11.2 Sēmundja Celiake 62
1.11.3 Sēmundja Addisort (insuficenca surenale primare) 66
1.11.4 Vitiligo 67
1.11.5 Gastriti autoimun (GA) dhe anemia pernicioze 68
1.11.6 Sindromi Autoimun Poliglandular (SAP) 69
1.11.7 Sindromii IPEX 69
1.11.8 Necrobiosis lipoidica diabeticomm 70
KAPITULLI II. QËLLIMI DHE OBJEKTIVAT E STUDIMIT 71
2.1 Qëllimi i studimit. 71
2.2 Objektivat e studimit 71
2.2.1 Objektivi i pērgiithshëm 1 71
2.2.1.1 Objektivat specifikë pêr objektivin e përgjithshëm 1 71
2.2.2 Objektivi i perrgjithshěm 2 71
2.2.2.1 Objektivat specifikë për objektivin e përgjithshëm 2 71
2.2.3 Objektivi i pěrg jithshěm 3 72
2.2.3.1 Objektivat specifikë për objektivin e përgjithshëm 3 72
2.2.4 Objektivi i pérgjithshěm 4 72
2.2.4.1 Objektivat specifikë për objektivin e përgjithshëm 4 72
2.2.5 Objektivi i përgjithshëm 5 73
2.2.5.1 Objektivat specifikë për objektivin e përgjithshëm 5 73
2.2.6 Objektivi i pērgjithshēm 6 73
2.2.6.1 Objektivat specifikë për objektivin e përgjithshëm 6 74
2.3 Hipotezat e studimit. 74
KAPITULLI III. METODOLOG.JA 76
3.1 Tipi i studimit 76
3.2 Popullata në studim dhe kampionimi 76
3.3 Kriteret e pranimit dhe kriteret përjashtuese. 76
3.4 Mbledhja e të dhënave 76
3.4.1 Instrumentet për mbledhjen e teٌ dhěnave 76
3.5 Aspektet etike 79
3.6 Përkufizimi i ndryshorëve 79
3.6.1 Faktorët e pavarur 79
3.6.2 Faktorett e varur 84
3.7 Analiza statistikore etë dhënave 85
KAPITULLIIV. REZULTATET 86
4.1 Të dhëna të përgithshme sociodemografike 86
4.2 Të dhëna lidhur me kuadrin klinik 92
4.3 Krahasimi i parametrave të ndryshëm midis fëmijëve me DMT1 me KAD dhe fëmijë me DMT1 pa KAD 96
4.4 Ecuria në kohë e parametrave laboratorikë, sipas Iloj it të DMT1. 101
4.4.1 Ecuria e HbAlo nẻ kohě sipas grupeve te̊ studimit 101
4.4.2 Shfaqja e sēmundjeve autoimune bashkēshoqëruese. 102
4.4.3 Ecuria e TSH-see nẻ kohẻ sipas grupeve tẻ studimit 103
4-4.4 Ecuria e FT4-ès ne kohë sipas grupeve tẻ studimit 105
4.4.5 Ecuria e TPO-së në kohē sipas grupeve të studimit 106
4.4.6 Ecuria e anti-tiroglobulinës nẻ kohê sipas grupeve tẻ studimit 108
4.4.7 Ecuria e TG-IgA nē kohë sipas gnupeve të studimit 110
4.4.8 Ecuria e anti-TG-IgG nẽ kohẽ sipas grupeve të studimit 111
4.5 Faktorët e lidhur me praninë e KAD tek fëmijët me DMT1 113
4.5.1 Lidhja e KAD me gjininé, moshēn the vendbanimin 113
4.5.2 Lidhja e KAD me kohzzzojatjen e shenjave dhe simptomave 114
4.5.3 Lidhja e KAD me historinë familjare për diabet dhe infeksionet paraprirëse 114
4.5.4 Lidhja e KAD me infeksionet virale che gjendje te tjera shpèrthyese dhe stresin psiko-social 115
4.5.5 Lidhja e KAD me njê sêrễ paraqitjesh klinike 116
4.5.6 Lidhja e KAD me parametrat laboratorikë 119
KAPITULLIV. DISKUTIMI 121
5.1 Përmbledhje e gjetjeve kryesore të studimit aktual 121
5.2 Krahasimi i studimit tone me studimet të tjera kombëtare dhe ndërkombëtare 124
KAPITULLI VI. KONKLUZIONE 143

SHKURTIMET:

DM	- Diabeti Mellitus
DMT1	- DiabetiMelitus Tip 1
KAD	- Ketoacidozes's Diabetike
DMT2	- Diabeti Melitus Tip 2
LADA	- Diabeti Autoimun Latent Ne Adult
ADM	- Diaber Melitus Atipik
MODY	- Diaben Me Fillim Ne Adultèri ITe Rinjve
SAT	- Sëmundje Autoimmune Të Tiroides
SC	- Sèmumjie Celtake
SA	- Sëmundja Addison
SAP	- Sindrom Autoimun Poliglandular
Hbale	- Hemoglobina e Glukozuar
HLA	- Amtigjeni Leukocitar Human
KMPI	- Kompleksi Madhor I Pajtueshnneerisë Indore
GAD	- Acidit Glutanik Dekarboksilazë
LA-2	- Protema 2 e lidhur me Insulinoma
Znts	- Transportuesi i Zinkut
LAA	- Antitrupat anti Insulin
ICA	- Antitupat anti Qelizave Ishullore
FPIR	- Pergigia akute e Insulinès ndaj Glukozés
IVGTT	- Testi i tolerancés sé Glukozés Intravenoze
OGTT	- Testí i Tolerancës me Glukozé Orale 2 oré pas Ngarkesës
IGT	- Toleranca E Demuar E Glukozés
IFG	- Dentimi i Glicemise Esell
FT4	- Tirokstmé,Frakstont iLtre
FT3	- Trijodtironiné,Fraksioni i Liré
TPO	- Tiroid Peroksidazess
TSH	- Hormoni Stimulues i Tiroksines (Tirotropine)
Tg	- Tiroglobuline
TTG Iga	- Anti-Transglutaminaze Indore IgA
TTG Igg	- Anti-Transgiutaminazè Indore $\operatorname{Ig} G$
EMA	- Anti-Endomiseal IgA
ACA	- Antibupa Ndaj Qelizave Surenale
GA	- Gastriti Autoimun

PCA	Antikorpet anti Qelizave Parietale
BMI	Indeksi i Masēs Trupore
OBSH	Organizata Botērore E Shëndetësise
ADA	Shoqutës Amerikane fé Diabetit
ISPAD -	Shogata Ndèrkombètare e Diabetit për Fëmijet dhe Adoleshentët
ESPEGHAN -	Shoqata Evropiane Gastroenterologii Pediatrike, Hepatologii, Ushquerje
DPG -	Dietés Pa Ghuten

LISTA E TABELAVE

Tabela 1.1. Klasifikimi etiologiik i diabetit mellitus. ... 2

Tabela 13. Renditja e shteteve (nẽ rend zbrites') sipas numrit tę fèmijëve me diabet *6
Tabela 1.4. Renditja e shteteve (né rend zbritess) sipas incidencess sę diabetit tip 1*6
Tabela 1.5. Incidenca e DMT1 nẽ rajone të ndryshme të botēs* 7
Tabela 1.6. Incidenca e DMT1 nễ fêmijêt 0-14 vjeç nê rraca të ndryshme sipas grup- mosheैs. 18
Tabela 1.7. Autoantigienet target tę autoantikorpeve nẻ DMTl 28
Tabela 1.8. Vlersimi i gravitetit te ketoacidozěs diabetike në fêmijét 36
Tabela 1.9. Vlersimi i gjëndjes neurologjike i fëmijëve me ketoacidozës diabetike (KAD) 39
Tabela 1.10. Shkalla Glasgow e Komës dhe Shkalla Glasgow e Komēs Pediatrike (279,280) 40
Tabela 1.11. Kriteret për diagnozēn e diabetit sipas ADAs. 42
Tabela 1.12. Klasifikimi i tipeve tē diabetit qē shihen nē fèmijēt 50
Tabela 4.1. Të dhēnat bazë socio-demografike të fèmijēve me DMT1 në studim. 86
Tabcla 4.2 Shpërndarja e fèmijëve në studim sipas diagnozës së dyshuar në shtrim dhe diagnozês perrfundimtare 87
Tabela 4.3. Praria c ketoacidozēs diabetike tek fèmijët pjesēmarrës me DMT1 87
Tabela 4.4. Shpérndarja e pjesęmarrèsve nẻ studim sipas sezonit te̊ lindjes dhe sezonit të diagnozēs së DMT1 87
Tabela 4.5. Te dhěna lidhur me historinè familjare per DMT1 dhe DMT2 88
Tabela 4.6 Tę dhěna perr pranině e infeksioneve virale, stresit psiko-social dhe aplikimin e vaksinave, ne̊ total dhe sipas giinisé sé plesêmarrěsve 89
Tabela 4.7 Tè dhẻna për praninể e infeksioneve virale, stresit psiko-social dheaplikimin e vaksinave, sipas moshës së pjesēmarrēsve.90
Tabela 4.8. Koha midis shfaqjes sē simptomave dhe diagnozess se DMT1 91
Tabela 4.9. Shperndarja e fèmijëve sipas kohës midis shfaqjes se己 simptomave the diagnozess se DMT1 91
Tabela 4.10. Disa paraqitja klinike tẽ sëmundjes sipas llojit tẽ diabetit DMTI 92
Tabela 4.11. Paraqitja tê tjera klinike e sêmundjes sipas llojit tę diabetit DMT 1 93
Tabela 4.12. Paraqitja tě tjera klinike e sěmundjes sipas llojit teٌ diabetit DMT1 (vazhdim) 94
Tabela 4.13. Té dhěna pěr praniné e disa giendjeve klinike sipas moshěs së pjesënarrësve. 96
Tabcla 4.14. Të dhēnat socio-demografike të fèmijēve nē studim sipas llojit të DMT1 97
Tabela 4.15 Kohēzzjatja mesatare e shenjave dhe simptomave sipas llojit té DMT1 97
Tabela 4.16. Historia familjare për diabet dhe infeksionet paraprirēse të fëmijëve në studim sipas llojit té DMT1 98
Tabela 4.17. Krahasimi i disa parametrave laboratorikē sipas llojit tę DMT1 98
Tabela 4.18. Krahasimi i disa parametrave laboratorikě sipas giinisę sę fémijève me DMT1 99
Tabela 4.19. Krahasimi i disa parametrave laboratorikè sipas moshĕs sé fèmijève me DMT1 100
Tabela 4.20. Ashpërsia e KAD bazuar nè nivelin e pH dhe HCO 3 sipas llojit tě DMT 1 100
Tabela 4.21. Krahasimi i vlerave të glicemisë në kohë, sipas llojit të DMT1 101
Tabela 4.22. Karakteristikat e sěmundjeve autoimune bashkēshoqëruese tè diabetit MDMT1 gjatè periudhës sê studimit. 1012
Tabela 4.23. Krahasimi i vlerave të TSH nē kohë, sipas llojit tē DMT1. 1043
Tabela 4.24. Krahasimi i vlerave të FT4-ës në kohē, sipas llojit të DMT1 105
Tabela 4.25. Krahasimi i vlerave të TPO-sē në kohë, sipas llojit té DMT1 1076
Tabela 4.26. Krahasimi i vlerave tē anti-tiroglobulinës nē kohë, spas llojit të DMT1 108
Tabela 4.27. Krahasimi i vlerave tẽ TG-IgA ně kohẽ, sipas llojit te DMTl 11009
Tabela 4.28. Krahasimi i vlerave të anti-TG-IgG nē kohë, sipas llojit tė DMT1 111
Tabela 4.29. Lidhja midis pranisě sĕ KAD tek fèmijĕt diabetiké dhe variableve têzgjedhur - Raporti i gjasave (OR) nga testi i Regresionit Logiistik Binar113
Tabela 4.30. Lidhja midis pranisê sę KAD tek fèmijēt diabetike dhe kohe̊zgjatjes sê shenjave dhe simptomave - Koeficienti B nga testi i Regresionit
Logistik Binar. 114
Tabela 4.31. Lidhja midis pranisē së KAD tek fèmijët diabetikē dhe variableve të zgjedhur - Raporti i gjasave (OR) nga testi i Regresionit Logjistik Binar 1156
Tabela 4.32. Lidhja midis pranisě sễ KAD tek femijët diabetiké dhe variableve tê zgjedhur - Raporti i gjasave (OR) nga testi i Regresionit Logjistik Binar 1167
Tabela 4.33. Lidhja midis pranisě sẽ KAD tek fèmijēt diabetikè dhe paraqitjeve klinike tè zgjedhura - Raporti i gjasave (OR) nga testi i Regresionit Logjistik Binar. 1178
Tabela 4.34. Lidhja midis pranisë sê KAD tek fëmijët diabetikē dhe parametrave laboratorikē të zgjedhur - Koeficienti B nga testi i Regresionit Logjistik Binar 119

LISTA E GRAFIKËVE

Figura 1. Incidenca e diabetit mellitus tip1 dhe tip2 tek të rinjtë sipas grupmoshave né Shtetet e Bashknara. 17
Figura 1.2. Periudha e zhvillimit të diabetit tip 1. (201) 21
Grafiku 4.1. Niveli mesatar i HbAlc (në \%) midis fèmijëve diabetikë me dhe pa KAD, përgiate kohes 102
Grafiku 4.2. Niveli mesatari TSH midis fèmijëve diabetikē me dhe pa KAD, per rgiatě kohess. 105
Grafiku 4.3 Niveli mesatar i FT4-ës midis fënijëve diabetikë me dhe pa KAD, pergjatẽ kohěs. 106
Grafiku 4.4 Niveli mesatar i TPO-sè midis fermijēve diabetikë me the pa KAD, pèrgjate kohess 108
Grafiku 4.5 Niveli mesatar i anti-tiroglobulinës midis fërnijēve diabetikè me dhe pa $K A D$, përgiatë kohës 109
Grafiku 4.6 Niveli mesatar i TG-lgA midis fènijēve diabetikë me dhe pa KAD, përgjatë kohēs. 111
Grafiku 4.7 Niveli mesatar i anti-TG-IgG midis fèmijêve diabetikē me dhe pa KAD, përgjatë kohēs. 112

KAPITULLI I. HYRJE

1.1 PËRKUFTZIMI

1.1.1 Diabetit Mellitus

Diabeti mellitus (DM) Êshitẽ njé çrregullim metabolik kompleks multifaktorail i cili karakterizohet nga hiperglicemia kronike me çrregullim të metabolizmit tē karbohidrateve, yndymave the proteinave si rezultat i difekteve nee sekretimin e insulinēs, veprimin e insulinës ose tē dyja (1).

1.1.2 Diabetit Mellitus Tipi 1

Diabeti mellitus tipi 1 (DMT1) Ẽshtê sęmandja endokrine dhe metabolike kronike më e zakonshme nẽ fèmijęt dhe adoleshentět (2) që ndodh nẽ personat gjenetikisht tê predispozuar pēr shkak të defiçitit absolut tē insulinẽs nğa shkatërrimi selektiv autoimun me nderrmjetësi-qelizore i qelizave beta insulin prodhuese nẽ ishujt e Langerhansit nê pankreas (3,4) si rezultat i ndêrveprimit kompleks i faktorēve gjenetike, imunologjike dhe mjedisore (5).

1.2 KLASIFIKIMI I DIABETIT MELLITUS

Klasifikimi i duhur i diabetit është i rëndësishëm për tè pārcaktuar trajtimin e përshtatshēm. Ne shumicẻn e rasteve pacientēt me DM klasifikohen nê njé nga 2 kategcritë e mēdha: diabet tip 1 ose diabet tip 2. Pavarēsisht se vendosja e diagnozës së diabetit për heré të paré zakonisht bazohet nẻ̉ karakteristikat klinike në prezantim, disa individë mund të mos klasifikohen nē mēnyrè të saktë. Kjo sepse, në disa raste diagnoza Kinike vẽshtirësohet nga faktorë si ritja e prevalencẽs sē mbipeshës/obezitetit nē fermijët dhe adoleshentët me diabet tip 1 , (6) shfaqja e ketoacidozës diabetike (DKA) (7) nē diabet tip 2 apo shfaqia e formave familjare të diabetit (diabet monogenik) në tèmijett dhe adoleshentēt. (8)
Nē 1997, Komiteti i Ekspertêve pēr Diagnozën dhe Klasifikimin e Diabetit, e klasifikoi DM bazuar mbi moshěn e shfaqjes (juwenil dhe adult). (9) Nẽ vitin 1999, ekspertēt e Shoqates Amerikane te Diabetit (ADA) e modifikuan kete klasifikim duke u bazuar nẻ fiziopatologjinẽ e tipeve tĕ nơryshme tè diabetit.(10) Megjithatě, klasifikimi sipas ADA-s nuk pasqyron heterogienitetin klinik te paciente̛ve me diabet melitus.
Pavarësisht se klasifikimi i diabetit melitus mbeshtet duke marre parasysh karakteristikat klinike, nevojés pèr insuliné, autoimunitetin e qelizave beta, funksionin e qelizave beta dhe insulin-rezistencës, koncepti i sotëm ështe se, disfunksioni i hershëmi qelizave beta mund té jete defekti primar nẻ fiziopatologine e diabetit. Sipas
nevojès për insulin, pavarěsisht shkakut primar, diabeti melitus klasifikohet: (1) nevojě pêr insulinè pèr tè mbijetuar, (2) nevojè për insulinē pèr tè kontrolluar metabolizmin jo pêr tê mbijetuar, (3) mungesẻ e nevojës për insulinẻ pēr tê kontrolluar metabolizmin (trajtim me metoda me/jo farmakologjike por jo me insuline) (11).
Aktualisht, klasifikimi qé përdoret pěr diabetín mellitus bazohet nẽ etiopatogienezzèn (etiologjine dhe fiziopatologjiné), i cili e ndan atẻ nẽ 4 kategori klinike të dallueshme: DMT1, DMT2, diabet nga shkaqe specifike the Diabet gestacional (Tabela 1.1). (12)

Tabela 1.1. KIasiflimim ctiologht 1 alabertit melfitus.
I. Tiabeti tipi I* (shkatërrim i qelizave beta), zakonisht çon né defiçit absolut tee insulinës.
A. Me ndērmjetësi imune (tip 1A)
B. Idiopatik (tip IB)
II. Diabet tipi 2 (mund te variojé nga predominimi i insulinorezistences me defiçit relativ të insulinës në predominim tē defekteve tē sekretimit me insulinorezistencë)
III. Tipe specifike të tjera
A. Defekte gjenetike te funksionit tẽ qelizave beta

1. Kromozomi $12, H N F l$-alfa (MODY3)
2. Kromozomi 7, GCK (glukokinaza) (MODY2)
3. Kıomozomi 20, HNF4-alfa (MODY1)
4. Kromozomi 13, faktori-1 promotor i insulinēs (PFF - 1 ; MODY4)
5. Kromozomi 17, HNFl-beta (MODY5)
6. Kromozomi 2, NeuroD 1 (MODY6)
7. Kıomozomi 2, KLF1I (MODY7)
8. Kromozomi 9, CEL (MODY8)
9. Kromozomi 7, PAX4 (MODY9)
10. TNDM (më shpesh defekti imprinting PLAGL 1/HYMAI ně 6q24)
11. PNDM (më shpesh gieni KCNJII qé kodon nën-njésiné Kiro. 2 të kanalit KATP te qelizave -beta)
12. Mutacione tē ADN mitokondriale
13. Të tjera
B. Difelte gjenetike të veprimit të insulinēs
14. Insulino-rezistenca Tipi A
15. Leprekaunizmi
16. Sindromi Rabson-Mendenhall
17. Diabeti lipoatrofik
18. Të tjera
C. Sëmundje elzokrine të pankreasit
19. Pancreatiti
20. Trauma/pankreatoektomi
21. Neoplazi
22. Fibroza kistike
23. Hemokromatoza
24. Pankreatopati fibrokalkuloze
25. Tëtjera
D. Endokrinopati
26. Akromegalia
27. Sindroma Cushing
28. Glukagonoma
29. Feokromacitoma
30. Hipertiroidizmi
31. Somatostatinoma
32. Aldosteronoma
33. Tëtjera
E. Induktuar nga medikamente ose lěndè kimike
34. Vakor
35. Pentamidina
36. Acidi nikotinik
37. Glukokortikoidet
38. Hormone të tiroides
39. Diazoksidi
40. Agonistēt beta adrenalgjik
41. Tiazidikēt
42. Dilantina
43. Interferoni alfa
44. Antipsikotikēt atipik
45. Te tjera
F. Infeksionet
46. Rubella kongenitale
47. Citomegalovirusi
48. Enteroviruset
49. Tè tjera
G. Format jo tē zakonshme të diabetit me ndērmjetäsi imune
50. Sindromi "Stiff-man"
51. Antikorpe anti receptorit tề insulinēs
52. Sindromi Poliendoknin Autoimun (APS) tipi I dhe II
53. IPEX
54. Të tjera
H. Sindromat gjenetike te tjera qe shoqērohen me điabet
55. Sindrani Down
56. Sindromi Klinefelter
57. Sindromi Turner
58. Sindromi Wolfram
59. Ataksia Friedreich
60. Korea Huntington
61. Sindromi Laurence-Moon-Biedl
62. Distrofia miotonike
63. Porfiria
64. Sindromi Prader-Willi
65. Të tjera
IV. Diabet melitus gestacional (GDM).
"CEL., lipaza karboksil ester; HNF, faktori muklear i hepatociteve, IPEX, enteropatia poliendokrinopati çregullemi-imum, sindromi i liehurme-X; IPF, faktori i promotorit té insuliněs, KLF11, faktori 11 i ngjashèn me Kruppel; MODY, diabet ité rriturve qé shfaget né té rinjtéPAX4, Paired Domain gene 4. ${ }^{\text {a }}$ Pacientet me çdo njé nga tipet e diabetit mund tê kêrkoje trajtim me insulin né stade té caktuara té setruundjes setyre. Perdorimi i insulinés ne vetvete nuk cklasifikon pacientin.

Disa forma te diabetit, përfshi format e shkaktuara nga medikamentet, hommonet, toksinat shihen rrallē nē tē rinjtē. Në Afrikë dhe Azinē Jugore, format atipike tē diabetit mund tę shfaqen nè femijět mé të rritur, adoleshentēt dhe adultët e rinj. Këtu pérfshihet diabeti atipik i prirur për ketozë, diabeti i lidhur me malnutricionin dhe sèmundjen pankreatike fibrokalkuloze. $(\mathbf{1 3 , 1 4})$

1.3 KARAKTERISTIKAT EPIDEMIOLOGJKE

1.3.1 Incidenca dhe prevalenca

DMT1 eshtē sêmundja endokrine the metabolike mè e zakonshme nẽ fèmijest dhe adoleshentët e moshēs $0-14$ vjeç, shpeshtēsia e të cilit ēshtë rritur kudo në botè né tre dekadat e fundit. Rriţja e incidencës sē diabetit tip 1, veçañēnisht nē fénijèt e vegiël 0-4 vjeç mendohet te jetè i lidhur me ndryshimin e faktoreve mjedisorë perfshi the infeksionet virale. Nē mbarē botēn, $5-15 \%$ e të gjithē pacientēve të diagnostikuar me diabet janē me DMT 1, 85-95\% me DMT2 dhe mè pak se 2% format e tjera të diabetit (15) Megjithëse, shpeshtēsia e DMT1 është mē e vogël se e DMT2, mẽ shumē se 90% e fémijēve dhe adoleshentève që diagnostikohen për heré té paré me diabet jane DMT1.

Njohurite tona mbi epidemiologinè che historine natyrale te DMT1 janè rritur ndjeshèm falë pêrdorimit tē metodikave tē standartizuara. (16) Shumica e tè dhënave reth. DMT1 vijiné nga vendet me incidencê tē lartę dhe tê ndërmietme, kryesisht Europa dhe Amenka e Veriut té cilat prej 1980 ndërtuan regjistra retrospektive dhe prospektivé. Té dhènat nga vendet me incidencê tê ulět ose shumê tể ulèt si Amerika e Jugut. Afrika, Azia mungojnê, janë tę pakta ose jo tê besueshme pĕr shkak te̊ mungesès së regjistrave bazuar në popullatẽ. (16) Takimi i mbajtur në Filadelfia nẻ 1983, i cili coi nê themelimin e grupit DERI (Diabetes Epidemiology Research Intemational), (17) studimi i iniciuar nga Komuniteti Ekonomiki Europés nẻ 1988 i quajtur EURODIAB ACE (Europe and Diabetes: Aetiology of Childhood Diabetes on an epidemiological basis) (18), projekti nderkombatar i OBSH nē 1990 për Diabetin në Fēnijëni (DLAMOND) (16) dhe projekti SEARCH (for Diabetes in Youth study) (19) me pjesmarjen eqēndrave të shumta né shtcte tē ndryshme luajitèn rol kyç në mbledhjen e tę thënave tē standartizuara pēr vlersimin e incidencés sề DMT1. Këto projekte kërkimore diskutuan rēndēsinē e vendosjes sé regjistrave tē standartizuar pērr të lehtēsuar krahasimet ndērmjet vendeve, hartuan regïstra të shumtë bazuar në popullatèn regionale ose kombētare. Gjithashtu, në bashkëpurim monitoruan tendencën c incidencês dhe mblodhèn informacion pér tê përcaktuar shkakun e patogienezờs sê sěmundjes nè fèmijët <15 vjec.

1.3.2 Diabeti tip 1 në botë

Incidenca e DMT 1 diagnostikuar me pér herề tę parè nè fèmijët dhe adoleshentét < 15 vjeç ritet afërsisht me 3% (varion 2-5\%). (20) (Tabela 1.2).

Tabela 1.2. Nams total dhe nampi rasteve te rejai fembere me chabet tip $1,0-14$ yes

Diabeti tip 1	$\mathbf{2 0 0 9}$ $(\mathbf{2 1)}$	$\mathbf{2 0 1 3}$ $\mathbf{(2 2)}$	$\mathbf{2 0 1 5}$ $\mathbf{(2 3)}$	$\mathbf{2 0 1 7}$ $\mathbf{(2 4)}$	$\mathbf{2 0 1 9}$ $\mathbf{(2 5)}$	$\mathbf{2 0 2 1}$ $(\mathbf{2 6)}$
Popullata totale e fëmijëve (0-14 vjec, bilion)	1.9	1.9	1.92	1.94	1.98	1.99
Numri i fëmijëve me diabet tip 1 (mijë)	480,0	497,1	542,0	586,0	600,9	651.7
Rritja e incidencës/vit (\%)	3	3	3	3	3	3
Numri i rasteve të reja të diagnostikuar/vit (mijè)	75,8	79,1	86	96,1	98.2	108.3

Incidenca e DMTI nẻ fènijēt < 15 vjeç karakterizohet nga variacion i gjerë ndërmjet
vendeve tề ndryshme tè botès. (27) Nê rang boteैror incidenca e DMT1 klasifikohet duke e grupuar popullatēn nē popullatë me; incidencë shumē të ulēt ($<1 / 100.000 / \mathrm{vit})$, te ulĕt (1-4/100.000/vit), tè mesme (5-9.99/100.000/vit), te larte ($10-19.99 / 100.000 /$ vit) the shumé teٌ lartë ($\geqslant 20 / 100.000$ /vit). (27) Incidenca e përgithshme e DMT1 ështẻ $11.43(95 \%$ CI $10.31-12.55)$ per 100.000 femije/vit; dhe sipas gimise 11.42 (10.23 12.61) për djemte dhe 11.11 (9.94-12.27) pěr vajzat (28)

Vendet me prevalences dhe me incidencé mẽ tę lartê tê fëmijêve dhe adoleshentēve < 15 vjec me DMT1 jepen ne tabelat 1.3 dhe 1.4 respektive.

Ranku	Shteti	Numri i fëmijëve me diabet tip 1
$\mathbf{1}$	Shtetet e Bashkuara t̄̄ Amerikës	84,100
$\mathbf{2}$	India	70,200
$\mathbf{3}$	Brazili	30,900
$\mathbf{4}$	Kina	30,500
$\mathbf{5}$	Mbretéria e Bashkuar	19,800
$\mathbf{6}$	Federata Ruse	18,500
$\mathbf{7}$	Arabia Saudite	16,100
$\mathbf{8}$	Germania	15,800
$\mathbf{9}$	Nigeria	14,400
$\mathbf{1 0}$	Meksika	13,500

*Burimi: (24)
Tabela 1.4. Renulifaa e shreteve (në nend zbrifís) sípas incidencös sü diabenit tip 1^{*}

Ranku	Shteti	Numri i rasteve tër reja për $\mathbf{1 0 0 , 0 0 0}$ femijë/vit
1	Finlanda	62.3
2	Suedia	43.2
3	Kuvait	37.1
4	Norvegiia	32.5
5	Arabia Saudite	31.4
6	Mbretēna e Bashkuar	28.2
7	Itlanda	26.8
8	Kanadaja	25.9
9	Danimarka	25.1
10	Shtetet e bashkuara të Amerikës	23.7
Burimi: (24)		

1.3.3 Variacionet gjeografike

DMT1 nê fèmijêt the adoleshentęt < 15 vjeç karakterizohet nga (1) variacioni giegrafik mjafti gjeré i incidences mè shumẻ se 600 fish, nga 0.1 nẻ Venezuel nẻ 62.3 per 100,000 pěr vit né Finlandé; (24) (2) rritje e incidencés nẻ̉ shumé vende si né ato me prevalence tê larté che té ulet dhe (3) tendence e shfaqjes drejit grup-moshès mé tee vogel ($0-4$ vjeç). (29) Rritja mjaft e shpejte e incidencess shibet nè disa prej vendeve me prevalence te ulet si Europa Qëndrore the Lindore, Lindja e Mesme, Afrika subSaharane, nē veçanti nē fèmijët e vegjēl tē moshēs $1-3$ vjeç dhe para-shkollore ($\mathbf{1 6 , 2 9)}$ Incidenca e DMT1 eshte e larmishme ndermjet vendeve te ndryshme por edhe brenda vēndit, midis vendeve fqinje dhe ndërmjet rajoneve fqinje me gjerësi gjeografike të ngjashme, ndërmjet popullatave etnike brënda një zone gjeografike te caktuar. Incidenca e përgiithshme nē rajone të ndryshme ështē si më poshte. (Tabela 1.5).

Tabela 1.5. Incidencze DMT7 ne rajonc te ndrushme te boles*

- Rajoni	- Incidenca (100,000 femmijè/vit)
- Europa	- 13.93 (12.59-15.27)
- Azia	- 4.31 (2.37-6.26)
- Amerika e Veriut	- 21.75 (13.79-29.70)
- Amerika e Jugut	- 4.47 (3.06-5.88)
- Afrika	- 7.38 (4.37-10.39)
- Amerika Qéndrore dhe India Perèndimore	- 6.71 (3.27-10.16)
- Oqeania	- 16.47 (13.67-19.27)

*Burimi: 28
Variacioni i gjere i diabetit mund tẻ shpjegohet nëpermjet predispozités gienetike (faktorë gienetik) the faktorēve mjedisor (faktorë jo-gjenetik).

1.3.4 Faktorët gjenetik

Nê afersisht giysměn e rasteve variabiliteti i larmishëm i incidencés sę diabetit tip I lidhet me predispozitēn gienetike. Për shembull, diferenca e shprehur e incidencës së DMT1 ndërmjet kaukazianẽve qể jetojně nĕ Europé (30) lidhat me shpeshtésinẻ e gieneve HLA predispozuese nê popullatěn e përgiithshme. $(\mathbf{3 1}, \mathbf{3 2})$ Ndêrmjet vendeve Europiane pérgjatë kufirit lindor të Finlandës dhe Rusisě ka një diferencé 6 fish në incidencẻ i DMT1 pavareैsisht shpeshtésisê sĕ barabartê tẻ gjenotipeve me misk tẻ ulęt the të lartė.(33) Po kēshtu, diferenca té médha në incidencë vihen re edhe midis popullatave gjenetikisht te̋ ngjashme që jetojnê relativisht afêr. Vendet nordike si Finlanda, Suedia dhe Norvegía kanë incidencë 2-4 herë mé tē larté se Estonia (18,34
36) dhe 2-3 herê mé e lartẻ se Islanda. (37) Diferenca té médha nes incidencé vihen re edhe midis SHBA dhe vendeve fqinje apo grupeve etrike tē ngjashme, konkretisht incidenca varion nga 19.7 neả SHBA, (38) 17.4 né Puerto Rico në 2.9 nẻ Kubẻ. (27) Incidenca e ndryshme e DMT1 ndérmjet rracave the grupeve etnike apo edhe brënda rraces pavare"sisht shtrirjes gjeografike, si edhe ruajtia e incidencess sè nglashme me ato tè origjiněs së tyre sesa me atę tê vendit ku jetojnë sugjeron se faktorest dhe diferencat gienetike predominoinē mbi faktorēt e mjedsit duke luajur niè rol tê rẽnděsishěm ně patogjenezěn đhe nẽ rriskun e shfaqjesê sé DMT1.

1.3.5 Faktorët mjedisorë

Variacionet e mëdha the rritja me ritme të larta e incidencess së DMT1 gjate dekadave te fundit nuk mund të shpjegohen vetëm me predispozitēn gienetike por sugjerojnë rēndësinẻ e faktorēve mjedisor nē shfaqjen e tij. Pēr fat té keq, njohuritē tona për faktoręt mjedisor misk tē mundshěm të diabetit tip 1 janẽ ende shumè të kufizuara. Ekspozimi ndaj një ose shumë faktorēve mjectisor i individëve gjenetikisht tē predispozuar, nxit një pérgjigje imuno-qelizore e cila dëmton qelizat beta. Identifikimi
 dhe zhvillimin e strategjive parandaluese. Megithëse studime tẽ shumta kane nxjerrë nê dritę shoqërimin e secilit nga faktorę tè mêposhtëm me shfaqjes e DMTI, asnjë nga kēto shoqërime nuk eshte verifikuar dhe shume prej tyre jane hedhur poshte nga studimet e tjera. Si faktorè mjedisore̊ tẻ mundshëm përmedim:

1.3.5.1 Gjerësia gieografike

Rriskui zhvillimit te diabetit ndikohet nga zona gjeografike (rajoni i veriut > jugut) dhe mitet me mitjen e gjerësisë gjeografike (distanca nga ekuatori). (39-42) Vendet si Sardenja (Itali), Suedia, Norvegjia, Portugalia, Mbretëria e Bashkuar, Kanadaja dhe Zelanda e Re kanë incidencë shumè e lartē (>20 për 100,000). (27) Ndërsa, vendet si Afrika, Paqësori Perendimor, Azia, Amerika e Jugut dhe Afrika kanë incidence tē ulët. (24) Nè Europē incidenca varion nga më e ulta në Gjeorgii (46/100,000/vit) nē shumë tẻ lartënẻ Finland ($62.3 / 100,000 / \mathrm{vit}$), (24) ku shumica e shteteve kanë incidence intermidiare (5.0-9.99 pēr 100,000 banorë). (27) Incidencë mē të lartē kanē vendet e Europës Veriore dhe Veri-perēndimore the mé të ulët në ato të Europzs Qendrore (vende me rrisk mesatar), Jugore dhe Lindore (vende me rrisk te ulët) (22) Perrjashtim nga ky rregull êshtẻ Sardenja (incidenca e dytẽ më të lartë nẽ botë 45:100,000/vit pas Finlandès), e cila edhe pse ndodhet 3000 km larg jugut tę Finlandès ka njè incidence 5 7 here mé te lartê se Italia kontinentale, (43) ndoshta éshté perr shkak te ekspoczimit ndaj faktorève mjedisor tè ndryshëm. Të dhẻnat tregoinë se incidenca e DMT1 po rritet me hapa shumé tè shpejté nẽ disa shtete te Europés Qëndrore chhe Lindore, veçanẻnisht nẻ
fèmijêt mẽ tê vegjèl. (27) Vendet skandnave, pavarěsisht se janẻ popullata gjenetikisht homogiene dhe me zhvillim social-ekonomik tē njējtē ndryshe nga vendet Europiane qēndrore dhe jugore janê vende me rrisk tê lartě dhe kanê diferenca nê incidencé ndërmjet tyre (23); Finlanda (62.3/100000/vit), Danimarka (25.1/100000/vit), Islanda (14.7/100000/vit). Norvegjia (32.8/100000/vit) dhe Suedia (43.2/100000/vit), Gjithashtu, diferenca të shprehura në incidence shihen edhe midis vendeve tè cilat kanë karakteristika gjenetike the sociale-ekonomike të ngjashme siç janẽ vendet balltike. Shtetet qes shtrihen mbi anšn veriore dhe lindore te detit Balltik si Finlanda dhe Suedia kanë incidencë shumẻ tẻ lartė tè DMT1 se Estonia (17.1/100000/vit) e cila shtrihet nē lindje the Polonia (17.3/100000/vit) né jug te detit Balltik. (23) Letonia ($7.5 / 100000 / v i t$) dhe Lituania ($14.2 / 100000 /$ vit) shumë afër me Estoninē kanë incidence 5 herë mē të ulët krahasuar me Finlandēn. (23)

1.3.5.2 Dieta dhe ushqimet

Ekspozimi i shpeshte dhe i madh ndaj qumēshtit té lopēs dhe produkteve të tij ose ndaj ushqimeve të pasura me proteina gjate fémijērisë sẽ hershme mund te shoqẽrohet me
 ndërmjet ekspozimit të hershẽm ndaj quamështit tẽ lopës ($\mathbf{4 7}$) apo midis kohẽzgjatjes së ushqyerjes me gii (44) dhe zhvillimit tę autoimunitetit anti ishullor tek fêmijêt neer rrisk tê larté pér té shfaqu DMTI Proteinat e qumeshtit tê lopés, baza pelt shumicen e formulave tě qumēshtit tẽ foshnjave, mund te̊ shpěrthejè̉ njé pêrgigje autoimune. (48) Kazeina, α-laktoglobulina dhe β-laktoglobulina konsiderohen proteinat alergjene kryesore tề quměshtit tê lopês dhe mê shumê se 50% e pacientẽve kanê kanê predispozite alergjie ndaj tyre.(49) Mekanizmi i sugjeruar nêpermjet te cilit qumështi i lopēs përfshihet në patogjenezën e diabetit tē tipit 1 ēshtë njē pērgjigje me ndërmjetèsi qelizore ndaj beta-kazeiněs, njé proteiné specifike e qumështit tę lopès. Konsumi the ekspozimi ndaj beta kazeinēs nxit prolifenimin e qelizave T periferike. (50) Hidrolizimi i proteinave të qumēshtit të lopēs rodukton jo vetëm miskun e alergiisë por edhe shpērthimin e njē pērgigie imune sepse redukton prodhimin peptideve bioaktive duke shkatērruar cpitopet (pikat e takinit qê bējnë të mundur njohjen e antigjenit nga sisterni imun ($\mathbf{5 1}, \mathbf{5 2}$) Megiithatë nevojitet njē njohje më e hollësishme e ekspozimit tê hershëm ndaj pērbërjes komplekse e proteinave tê qumërshtit tẻ lopés pêr tê kuptuar rolin e tyre nề shfaqjen e diabetit té tipit 1. Konsumimi i ushqimeve me pērnbajtje tè lartē karbohidratesh, gjithashtu konsiderohet faktor i shfaqies sê diabetit. Pęmbajtia e lartë dhe lloji i karbohidrateve në ushqim pêrkeqêson përgïgjen postprandiale ndaj glakozẻs, luan rd kyç né kontrollin e glicemisè. $(53,54)$ Ekziston njè shoqẻrim nde̛rmjet kohès sê ekspozimit perr herê tê parê tê foshnjave me misk tê larté pĕ̃r diabet tip 1 ndaj drithěrave the miskut tě shfaqjes sê autoantitrupave ndaj qelizave beta.(55) Fémijĕt e sapolindur me rrisk tẽ lartê pęr tẽ zhvilluar diabet tip 1 (ose
njè i afèm i brezit te⿱ pare (55) ose me gjenotip HLA me rrisk tẻ lartë, (48) ne̊se ekspozohen ndaj drithērave para moshës 3 ose pas moshës 6 muajsh kanë rrisk tē rritur pêr tê zhvilluar autoantitrupa ndaj qelizave beta (55) dhe DMT1 né krahasim me foshnjat, tę cilět ekspozohen ndërmjet moshës 4-6 muajsh (56) Rrisku mitet edhe më shumê nêse đritḩ̌rat pêrmbajnẻ gluten đhe oriz (55) Gjithashtu ekspozimi i hershëmm ndaj glutenit (<3 muajsh) rrit miskun e SC (57). Bazuar né kěto ted dhẽna, udȟ̌zimet aktuale tê ushqyeryerjes pèr foshnuat këshillojnè qẻ ekspozimi i parë ndaj drithërave tê jetë ndërmjet moshēs 4-6 muaj. (56)
Acidet yndyrore omega-3 janē acideve yndyrore polipasaturuara, konsiderohen faktor mbrojtěs dhe luajnë rol nĕ parandalimin e sémundjeve të ndryshme, pêrfshi dhe diabetin tip 1. Eshtë vënë re lidhje e anasjelltë ndērmjet marrjes së acidit yndyror omega-3 dhe shfaqies sê autoimunitetit ishullor (IA). (58) Acidet yndyrore omega-3 kanē rol mbrojtës në përgjigien inflamatore qē shoqëron shkatërrimin autoimun të qelizave ishullore ($\mathbf{5 8}, 59$) Vaji i mēlçisĕ së merlucit diver cod oil) ēshtë i pasur me acide yndyrore omega-3 dhe vitamine D. Marrja e tyre pas lindjes, foshnjënisé sē hershme (vitit të parë të jetc̄s) në ata gjenctikisht nē rrisk tê lartë për tę shfaqur diabet tip 1 (gienotip HLA me rrisk tẻ lartè pĕr diabet ose qę kanę niè vêlla/motẽr ose prind mẽ DMT1) shogërohet me ulje të̈ rriskut (60) pēr shkak të uljes tē prodhimit të autoantikorpeve anti ishullor.(61) Përmbajtja e nitratit nề ujin e pijishĕm nê përqęndrime te̊ larta $>14.8 \mathrm{mg} / \mathrm{L}$ shoqęrohet me rritjen e incidencęs sę DMTI krahasuar me ujin me përqendrim < $3.2 \mathrm{mg} / \mathrm{L}$. (62)

1.3.5.3 Vitamina D dhe Ekspozim ndaj rrezeve ultraviolet B (UVB).

Vitamina D éshte njê komponent i réndessishěm i pèrgiigies imune normale dhe konsiderohet faktor mbrojtës ndaj shfaqjes sē diabetit tip 1.(60) Për mê tepër, ndryshe nga sëmundjet e tjera autoimune, incidenca dhe prevalenca e larte e DMTI nê zonat gjeografike te larta larg ekuatorit, në klimat veriore ku kohē-ekspozimi ndaj UVB ështē më i pakēt sugjeron rolin c defiçitit të vitaminës D në shfaqjen c autoimunitetit anti ishullor dhe DMT1.(63) Fëmijët e lindur nga nëna tē cilat gjatē periudhēs kritike tē zhvillinuit tē fctusit gjatē shtatzanisē shfaçin pamjaftucshmëri tê vitaninës D kanē rrisk tê rritur për tē shfaqur diabet tip $1 .(64,65) \mathrm{Një}$ argument indirekt nè favor tē rolit të ekspozimit ndaj UVB dhe shfaqjes tē sëmundjes êshtë vanacioni sezonal; incidencē e rritur e DMTI gjaté muajve tê vjeshtês dhe dimrit. Ekziston njê shoqêrim invers midis ekspozimit mesatar ditor ndaj UVB, gierësisē gjeografike dhe shfaqjes sc̄ sëmundjeve autoimune ndoshta duke e pẽrshpejtuar njé prọes autoimmn qể mund tẽ ketê filluar muaj apo vite më parē. (63) Vendet me kohëzgjatje tę shkurtërr te̊ ekspozimit ndaj diellit kanẻ incidencé mě té lartẻ tę diabetit tipl (28); ekspozimi me 3-4 ore, 4-5 orè dhe >5 né ditê orě kanê incidence $15.17,8.77$ dhe 6.96 respektivisht. Së fundmi, sa mẽ e madhe largesisia nga ekuatori aq mê e madhe incidenca e TIDM (28); $0^{\circ}-23^{\circ} 26 \mathrm{~N} / \mathrm{S}: 4.98$,
$23^{\circ} 26^{\circ}-40^{\circ} \mathrm{N} / \mathrm{S}: 7.83,40^{\circ}-66^{\circ} 34 \mathrm{~N} / \mathrm{S}: \mathbf{1 4 . 7 1}$, respektivisht. Marrja e vitaminés D pas lindjes, përveç ekspozimit ndaj UVB, nēpëmijet ushqimit dhe sublementeve éshtē e rêndësishme nẽ reduktimin e miskut te zhvillimit te diabetit tip $1(64,65)$

1.3.5.4 Faktori klimatik

Mendohet se klima luanrol ne induktimin the trendin e incidences se T1DM. Incidenca e TIDM pavarťsisht giinise eshtě mé e lartè né vendet me klimé oqeanike (dimèr dhe veré e ftohte). (28) Shqipëria sipas klasifikimit nga Wladimir Koppen, 1884 ka nje sistem klimaterik tē larmishēm; klimë mesdhetare me verë të ngrohtë dhe të thatē dhe dimèr te ftohte dhe te lagesht (ne zonat qe shohin nga deti Adriatik dhe Jon), subtropikale, oqeanike, kontinentale (verilindje) the subartike. (66)

1.3.5.5 Infeksionet virale

Infeksionet virale (prenatal dhe postnatal) konsiderohen si faktor risku i shfaqjes së diabetit tipl, ndonēse tè dhënat janē kontradiktore. Tè dhēnat e para pēr rolin e infeksioneve virale akute ose persistente 1 qelizave beta dhe dëntimit te tyre u gjetěn nę autopsinè e indit pankreatik ně individêt tẻ cilèt vdiqēn disa javẽ pasi u diagnostikuan me DMT1 për herě tẻ parè (67) Viruset mê tẻ shpeshta që akuzohen jane enteroviruset (koksakie), rubela, ekoviruset, Epstein-Barr, parotis, citomegalovirusi.(67) Viruset shkaktojne DMTI drejtpërdrejt duke infektuar dhe shkatèrruar qelizat beta (shumë malle) ose duke shpërthyer njê sulm antoimun ndaj qelizave beta. (68,69) Qelizat endokrine pankreatike zhvillohen dhe organizohen né ishujt e Langerhans né 32 ditēt e para pas konceptimit dhe gjatè gjithẻ̉ pjesès sẻ mbetur tê jetës fetale (70) Femrat qeै mbeten shtatzane giate muajve te veres dhe vjeshtes kur edhe infeksionet virale jane te shpeshta kanē mē shumë mundèsi tē infektohen gjatē 3 mujorit të parē të shtatzënisë the t 'ja transmetojne virusin embrionit the fetusit. Nese nēna i transmeton fetusit antitrupa, fèmija mund tē konsiderohet i mbrojuir. Duke patur parasysh kohëzgjatjen normale të shtatzënisé 40-jave, fëmijēt e lindur né pranverë dhe verê kanẽ mẽ shumë gjasa pēr tė shfaqur diabet tē tipit 1 , pēr shkak tē zhvillimit të fetusit gjaté peniudhës kulmore të infeksioneve virale. Fëmija mund té shfaqi diabet tip 1 në ¢̧do moment gjatē jetës së tij në varēsi tê shkallēs së dēmtimit të β-qelizave.
Iufeksionet enterovirale. Enteroviruset (EVS) janẽ ARN viruse, infeksionet e tẽ cilave, sidomos koksakie B5 shoqērojnè ose i paraprijnè fillimit tê DMTI. Mekanizmat e mundshme jane infektimi ohe demtimi i qelizave beta-pankreatike. (71) Infeksionet nga koksakie ndodhin mě shpesh nè muajt e veres dhe vjeshtēs. (72) Enterovinuset qarkullojné sipas modelit sezonal (veçanërisht koksalie B5), mẻ shpesh në muajët e verěs dhe vjeshtẻs, nẽ mēnyrẽ tipike nĕ muajin gusht-shtator dhe mé malle nê mars, $(72,73)$ dhe sipas modelit epidemik çdo $3-6$ vjet i cili zakonisht zgjat nje vit. Pikerrisht
gjaté vitit epidemik vihet re mitje e konsiderueshme e rasteve tê diabetit tip L．（74） Lidhja ndērmjet infeskionit nga enteroviruset dhe rriskut të zhvillimit të DMTImbështet nes；

1．izolimi virusit koksakie nẻ qelizat beta．（75）
2．gjetja e imunoglobuliněs $\mathrm{M}(\mathrm{IgM})$ specifike ndaj virusit koksakie B nê fèmijest me DMT1 diagnostikuar pěr here̋ te parẻ krahasuar me fêmijët normale（ 39% vs 6% ）（ $\mathbf{7 2}, 76$ ）
3．gietja e titrave shumẽ t $\begin{gathered}\text { lartẽ e antitrupave ndaj vinsit koksakie né gratě }\end{gathered}$ shtatzëna，fermijët e të cilëve mē pas zhvilluan DMT1，krahasuar me gratë shtatzěna，fèmijĕt e tę cilëve ruk shfaqẽn diabet．（77－79）
4．evidentimi i infeksioneve enterovirale pothuajse dy herë mē të zakonshme në vëllezērit e motrat qëz zhvilluan diabetin e tipit 1 sesa nē vęllezërit c motrat të cilët nuk zhvilluan diabet．（77）
5．gietja në fund të 3 mujont të parë tē shtatzanisë e gjenit për receptorin e sistemit imun ndaj enteroviruset（1F1H1）i cili konsiderohet si gien misk per diabet tip 1．$(77,78)$
6．identifikimi i proteinave EV nę pankreasine pacientěve me diabet tip 1（71）dhe prania e autoantitrupave anti qelizave－beta nē fémijēt e lindur nga këto nëna （80，81）
7．rritje e konsiderueshme e rasteve tę diabetit tip 1 gjatẽ epidemitê te̊ virusit Cox－ sackie B．（82）

Kēto tẻ dhẻna sugjerojné se ekspczimi si in utero dhe nê fèmijěri ndaj enteroviruseve mund tẽ shkaltojè infeltim the dëmtim te⿱丷 qelizave beta pankreatike dhe zhvillim të DMT1．Ngjashmēria ndērnjet acidit glutarnik dekarboksilazē（GAD）të njeriut dhe proteinès F2C te̊ koksakie B4，sugjeron njé rol tē mundshẻm për imitim molekular． $\mathbf{8 3 , 8 4}$ ）Infeksioni nga enteroviruset nxit shfaqjen e auto－antitrupave ndaj qelizave ishullore si dhe shprehjen e interferon－alfa，ngjarje të lidhura me shkatērimin e qelizave ishullore．
Rubela．Rubela kongjenitale konsiderohet shkak i rëndësishëm i diabetit mellitus duke infektuar qelizat beta，duke induktuar automunitet ose imitim molekular．（85）Diabeti mund tē shfaqet 5－20 vjet pas infektimit．（85，86）Për fat tē keg，periudha e gjatè latente midis aktivitetit imunologjik dhe shfaqjes sè sęmundjes e běn tè padobishme matjen e titrave viral．
Né kontrast nga sa u tha mësipèr，ka tê dhéna qé hedhin poohtę rolin e viruseve nê patogjeneze̊n e điabetit tê tipit 1．（87）Kèshtu infeksionet virale（koksakie B）né fèmijěri mund te己 shoqẻrohen me prodhimin e antitrupave anti GAD por nuk shkaktojne diabet tip 1．（ $\mathbf{8} 7$ ）Pěr tê ngatërruar mě tej problemin，ka prova se viruset mbrojnẻ dhe parandalojně shfaqjen e DMTI．Nê modelet te minjtë NOD dhe BB inokulimi i vinusit
limfocitik koriomeningitis, shtami Armstrong, kloni 13, virus limfotropik) nề njê moshë tē vogël redukton incidencèn e diabetit (88) dhe mitja e incidencē sē diabetit tip 1 kur minjteß mbahen nẻ̀ mjedise pa patogjene mbs̊shtet rolin mbrojtęs tę viruseve.(89) Prandaj, viruset the produktet e tyre mund te己 jenê të dobishme dhe mund të konsiderohen si një komponent përr trajtimin e sëmundjeve njerêzore. (90)

1.3.5.6 Imunizimi dhe Vaksinat

Pavarêsisht shqetësimeve tê vazhdueshme se vaksinimi gjate fèmijërisé mund tẻ shoqērohet mé pas me shfaqjen e sēmundjeve kronike, përfshi edhe diabetin tip 1, deri më tani nuk ēshte gjetur ndonje shoqēnim tee imunizimit me antigjen viral dhe bakterial i foshnjave gienetikisht tē predispozuara dhe ritjes sē rriskut të shfaqjes sē diabetit tip

1. (91)

1.3.5.7 Faktorë giatë shtatzanisë dhe periudhës perinatale

Disa faktorë të lidhur me shtatzaninë (mosha prindērore në lindje, radha e lindjes, sémundje tê nénés, infeksione virale) dhe periudhèn perinatale (pesha e lindjes, mosha e barrës) shoqërohen me rrisk tę rritur për diabet tip 1.(92) Fëmijèt qẻ̉ lindin nga něna
 sẻmundje respiratore dhe ikter neonatal, veçanêrisht për shkak tê papajtueshmêrisê sê grupit të gjakut ABO, femijët qē lindin tè parët në radhë, fèmijët me rritje intrauterine e shpejtě, fèmijet me peshẻ dhe gjatěsi lindje tę madhe, fêmijēt e lindur prematur kaně risk më té rritur për te shfaqu DMT1.(92-96) Fërnijet qẻ lindin me peshé tee madhe
 mé tê rritura. Efekti i pavarur i peshës se lindjes ndikon vetëm për dekadèn e pare tẻ jetës. (97) Fëmijët qē lindin me peshē dhe gjatēsi lindje të vogël, fêmijët e vonē nē radhẻ kanë rrisk mẻ te ulet (faktorët mbrojtés). (92) Fémijet që lindin nga prinder me giëndje sociale tē ulèt kanë rrisk tē rritur tē zhvillimit të diabetit gjate fêmijērisè, (98) por nga ana tjetēr nuk duhet të harrojmë se ata kanër rrisk më shumé për të qenẽ fëmijë me peshē të ulēt, e cila konsiderohet faktor mbrojtës.

1.3.5.8 Obeziteti (BMI e rritur). $(99,100)$

Rritja e shpejté postnale (mbipesha) konsiderohet faktor rrisku, qê mund tè shpjegojé pjesêrisht rritjen incidencês sê diabetit tip nẽ fèmijêt < 15 vjeç dhe sidomos nê grupmoshat mê tè vogla nẻ disa vende të Europěs, (101) Njè shpjegim mund tè jetẻ qě mbingarkesa e qelizave beta për shkak tê rritjes sề kërkesês pĕr insulinè tek fềmija neै mitje; kjo mund të përshpejtojè proçesin e shkatërrimit të qelizave beta duke rritur nevojē̃n pör insulinè. dhe tê çojè nẻ shfaqje klinike tę teٌ hershme tê diabetit. (102)

1.3.5.9 Emigrimi

Emigrimi i popullatave ofron njĕ pikẻpamje interesante mbi kontributin mjedisor nẻ zhvillimin e DMT1. Disa popullata qé emigrojnë ruajné rriskun e tyre tê crigjinês pêr tę shfaquir DMTI, ndêrsa tẽ tjerẻ marrinê rriskun e vendndbanimit tê ni. Rritja e rriskut te shfaqjes se DMT1 gjate enigrimit nga vendi me incidence te ulet drejt atij me incidencẻ té lartẻ sugjeron rolin etiologiik tẻ faktorěve mjedisorê. Kęshtu fèmijēt me origjine Izraelite qe jetojnê nê Kanada, (27) fèmijet me origjinê Indiane qè kanẻ emigruar nẻ Angli, (103) fënijēt me origiinë Japoneze (vend me incidencẽ të̉ ulët) që jetojnè nẻ Havai, $(\mathbf{1 0 4}, \mathbf{1 0 5})$ femijet me origine Franceze dhe Italiane qee jetojne ne Montreal (Kanada) (106) kanē incidencē shumē herē mē tē lartē se fêmijèt qee jetojnë nẽ vendet e tyre të origjinẽs dhe tẽ ngjashme me incidencẽ̛ e fëmijëve autokton nẽ vendet ku jetojnë.

1.3.5.10 Sezoni dhe muaji i lindjes

Diabeti melitus tip 1 karakterizohet nga variacioni sezonal global, modest, me incidence
 (pranverẻ, veré). $(34,106,107)$ Për herè tè parè variacioni sezonal i diabetit tip 1 u raportua nga Franklin Adams in 1926. (108) Karakteri sezonal eैshtê veçori jo vetęm e diabeti tipl por edhe e sëmundjeve tē tjera autoimune si sëmundja Graves, hipotiroidizmi Hashimoto, sermundjes Crohn, sëmundje atopike, rinitit alergijk the astma. (109-111) Kjo sugjeron praniné e nje shpërthyesi te perbashkẹt nẻ fillinnin e proçesit autoimun. Sezonaliteti i diabetit tipl shihet nẽ shume popullata ($\mathbf{1 1 2 , 1 1 3 \text {) dhe }}$ subgrup popullata, (114) por jo né disa popullata (115) Rrisku i zhvillimit te diabetit lidhur me muajin e lindjes mendohet se lidhet me variacionin sezonal tè zhvillimit tē autoimunitetit anti ishullor. (116,117) Sezonaliteti i shfaqjes së diabetit tip I per herë tē parë liđhet me faktorē mjedisoré tè shumtè sì mosha e diagnozès sè diabetit, regioni, pozicioni gjeografik (jug/veri), etniciteteti-heterogieniteti i popullatẽs, infeksionet virale, ushqyerja e nënave giatë shtatzanisē đhe fèmijëve gjatē viteve të para të jetës sē tij, nivelin e vit D, ekspozimi mesatar ditor ndaj rrezeve ultraviolet B (UVB), sezoni dhe muaji i lindjes apo periudha sezonale e konceptimit, etnia the ginia. (106) Kēta faktoręve mjedisor duke vepruar nē mẽnyrē episodike ose periodike gjatē peniudhês së shtatzanise dhe peri- dhe/ose post-natale $(\mathbf{1 1 8}, \mathbf{1 1 9})$ ndikojne mbi fetasin dhe femijèn, mund të konsiderohen si iniciues ose precipitues i zhvillimit te sëmundjes (120) dhe/ose autoimunitetit ant ishullor. (116-118) Shoqẽrimi midis maajit tę lindjes dhe miskut tě zhvillimit te diabetit, (121) ndersa ne đisa studime te tjera nuk shihet ky shoqërim. (122)

- Mosha në diagnozëe e DMT1 për herë të parë - sezonaliteti êshtë mê pak i shprehur nè femijet e diagnostikuar nën moshen $5 \mathrm{vjeç}$ the mé shumé i shprehur në

- Regioni dhe pozicioni gieografik - karakteri sezonal i dibetit tip I diagnostikuar për here te pare ndikohet nga pozicioni gjeografik (hemisfera jugore vs veriore) (116) por edhe nga regioni (sezonaliteti ishte mes pak i theksuar nè fémijét e diagnostikuar ne vendet Skandinave). (123) Ndikimi i pozicionit gjeografik (hemisfera venijug) në karakterin sezonal tê zhvillimit tê diabet tip I mund te̊ lidhet me nje ndêrveprim tê mundshëm ndërmjet nję faktori mjedisor qẽ vepron nê mẻnyrê peniodike ose episodike.
- Muaji i lindjes - zhvillimii i autoimunitetit ishullor né diabetin tip 1 lidhet edhe me muajin e lindjes. ($\mathbf{1 1 6}, 117$)
- Në vendet me incidencë të lartë si Finlanda, (124) Sardenja, (124) Britaninae Madhe, (121) Suedia, (122) Shtetete Bashkuara, (116) Zelanda e Re (hemisfera jugore), (112) dhe Gjermania ($\mathbf{1 2 5}, \mathbf{1 2 6}$) fémijet tê cilet lindin giate muaive tè veres dhe vjeshtes jane̊ mê tę predispozuar pèr tè zhvilluar diabet tip 1 krahasuar me ata qê lindin nē dimër. Ndërsa në disa studime moku vu re njes lidhje e tille (127)
- Në vendet me incidencë intermediare (5 -10 për 100,000) sic janẽ vendet e Europës Lindore, femijęt tê cilĕt lindin gjatê muajve tè dimrit kanê mé pak rrisk pér te zhvilluar diabet tip 1 krahasuar me ata qe lindin glate muajve té pranverès. (1119,128-130)
- Ndërsa në vendet me incidence të ulët tě diabetit tip $1(\leq 5$ per 100,000$)$ si Japonia (131) nuk ështê gjetur shoqërim midis sezonit té lindjes dhe zhvillimit diabet tip 1 nẽ krahasim me popullatèn e përgjithshme.
- Etnia dhe rraca. Karakteri sezonal i DMT1 diagnostikuar për herè të parë vihet re edhe midis rracave dhe etnive tē ndryshme. Nẽ popullatat honogiene pavarésisht incidencēs sé diabetit tip 1 (të tilla si Ashkenazi Hebrenjtè, Arabia, Sardenja dhe Zealanda e Re), fëmijët e lindur në muajt e pranverēs dhe verēs kanë mē shumë rrisk qẻ tę shfaqin diabet tip 1, ndërsa nẻ popullatat etnikisht heterogjene, si nẻ US dhe Australi ruk shihet ky shoqërim. (117) Nè Izrael grupet etrike kryesore kanë incidencę tề ndryshme; popullata arabe me incidencẻ tę ulĕt (29 për 100,000) dhe popullata Hebre me incidence mesatare (10-18 për 100,000). Popullata Hebre me diabet tip 1 numrin mê tê madh tę lindjeve e kishte neٌ muajt e pranverës dhe mé pak nẻ muajęt e dimrit ndërsa në popullatẻn Arabe nuk kishte diferenca. (132)
- Gjinia. Karakteri sezonal i muajit tè lindjes sę DMTI lidhet me gjininĕ nẽ disa nẽnpopullata. Keshtu né disa vende predominojné meshkujt qe lindin né muajt e pranverës the verēs për të shfaqur DMT1, $(127,133)$ ndërsa nē disa predominojnē femrat(134)
- Infeksionet virale. Karakteri sezonal i shvillimitt te DMT1 lidhur me infeksionet virale ka tẽ bëjé me mẽnyrẽn e qarkullimit sezonal dhe epidemik të tyre.
- Ushqyerja Gjithashtu, variacionet sezonale né ushqyerje mund te influencojné mbi nënat shtatzana dhe fetuset e tyre ose në fémijèt gjatē viteve të para た jetës së tij.

1.3.5.11 Gjendja social-ekonomike

Shpeshtësia e DMT1 ne fêmijett the adoleshentet po ritet ndjeshëm si né vendet e pasura me të ardhura tē larta edhe në vendet me të ardhura té pakta. (24)

1.3.6 Seksi/gjinia

DMT1 nē fëmijät dhe adoleshentēt, ndryshe nga shumë sëmundje autointune tē cilat janē mē tē zakonshme te femrat, mbart rrisk të ngjashëm nē tē dy ginitē pa diferenca tẽ rêndësishme (135-137). Predominimi ginor i DMT1 ndikohet nga raca, mosha e diagnozës sẻ diabetit dhe incidenca. Meshkujt me origině Kaukaziane, meshkujt në vendet me incidencē tē lartē ($23 / 100,000 / \mathrm{vit}$), ($\mathbf{1 3 8}$) meshkujt tē moshēs ≥ 13 vjeç me originẻ Europiane (grup moshê e cila ka mẽ shumẽ giasa pêr tẽ zhvilluar diabet pẻr tě njëjtën moshé dhe lokalizim gjeografik (raporti meshkuj:femra 3:2) $(\mathbf{1 3 9 , 1 4 0}$) dhe tèmijęt e diagnostikuar para moshès 6 vjeç $(\mathbf{1 4 1 , 1 4 2})$ kanẻ incidence lehtésisht më tẻ larté se femrat. Nga ana țetèr, mbizotęrimi femẻror shihet nẻ femrat me origjinê joKaukaziane, (143) Afrikane dhe Aziatike, vendet me incidencëtë ulēt, ($\mathbf{1 3 8}, 144$) fenrat me moshe penipubertale.(143)

1.3.7 Mosha

DMT1 shfaqet né cdo moshē. Mosha e shfaqjes sé DMT'1 për herë tē parè nē fèmijët dhe adoleshentët ka shpërndarje bimodale, veçanërisht nē zonat me prevalencē të madhe; një pik në fémijērinē e hershme $4-6$ vjeç dhe mië pik tē dyte, piku mē i madh i incidencës gjatë pubertetin tē hershëm $10-14$ vjeç, ($\mathbf{1 4 5 , 1 4 6}$) Piku i parë përkon me ekspozimin e rritur ndaj agjentève infektiv dhe piku i 2 pérkon me pikun e rritjes pubertale induktuar nga steroidet gonadale dhe rritja e sekretimit tè hormonit tê rritjes, tê cilat antagonizojně insulinẻn. Megjithatè, kjo lidhje e mundshme shkak-efekt mbetet pèr tu provuar. (145-147) Nè përgiithêsi, nè shumicēn e popullatave, incidenca ritet me moshĕn deri nę pubertetin e mesëm me pik ne moshẽ̀n $10-14$ vjeç dhe ulet pas pubertetit, veçanënisht ne femrat krahasuar me meshkuj. $(\mathbf{1 4 4 , 1 4 8})$ Afersisht 45% e
 e katëta e individēve zhfaçin DMT1 gjaté moshës adulte. (149)

Figura 1. Incidenca e diabetit mellihus tipI due tip? tek te rimjte sipas grupmoshave ne" Shtetet e Bashkuara.

Siç shihet nga figura pěr diabetin tip 1 , ka dy kulme nẽ̀ incidencę, nê fèmijẽrinêe mesme dhe në pubertetin e hershēm; kjo shpërndarje bimodale nuk ēshtë e dukshune nga kategoritẻ e moshave tê pērdonura për kête figurẻ. Burimi: 147
Megjitheैse incidenca e DMT1 nẽ disa popullata êshtẻ afêrsisht e njějteٌ nẽ te̊ 3 grupmoshat, aktualisht ně shume vende zhvilluara tê botess dhe nê ato nẻ tranzicion apo nê
 vegièl të grup-moshēs $0-4$ vjec. (150-152) Prandaj, diabeti duhet të konsiderohet dhe të dyshohet edhe gjatë vitit te 1-2 te jeters, sepse kjo moshẻ ka rriskun mé te madh petr vdekshmëri të lartē n.q.se diagnoca vonohet.

1.3.8 Rraca dhe etnia

Incidenca e DMT1 varion ndjeshëm ndërmjet rracave dhe grupeve etnike, Kaukazianēt kanë incidencē mē të lartë, zezakët mè tē ulēt, ndërsa Aziatikët dhe Ishujt e Paqēsorit mjaft tē ulët (tabela 1.6). (147) Shëmbulli më tipik ēshtē SHBA, e cila pērbëhet nga popullata tẽ mèdha rracash tẽ ndryshme (tabela 13). Né Shtetet e Bashkuara, incidenca e DMT1 nẽ fêmijêt dhe adoleshentēt e bardhẽ jo-Hispanikẽ është 23.6 për 100,000 në vit, dukshêm mẽ e lartê se ně grupet tě tjera etrike. (153)

Grup-mosha	$0-4$	$5-9$	$10-14$
Te bardhé (jo hispanik)	18.6	28.1	3.9
Afroamerikanẻt	9.7	16.2	19.2
Hispaniket	9.1	15.7	17.6
Indianẽt e Amerikẻ	4.1	5.5	7.1
Aziatiket/Ishujt e Paqèsorit	6.1	8.0	8.3

Burim reference, (147)

Brënda popullatës Kaukaziane pavarësisht shtrirjes gjeografike tê madhe, incidenca ẻshtẻ mẻ e lartẻ nẻ Mongoloidět se Negroidět. (154-157) Diferenca tě mëdha në incidencë raportohen ecthe midis popullatave Kaukaziane gjenetikisht të nqjashme qē jetojnc̄ relativisht afêr. Vendet nordike si Finlanda, Sueda dhe Norvegjia kanë incidence 2-4 herè mé tē lartë se Estonia (158-161) đhe 2-3 herë më e lartë se Islanda.(162) Po késhtu féniijēt qē migrojnë nga vendet me incidencé më të lartē drejt vendeve me incidencë me të ulët vazhdojnē tē ruajnē incidencēn e DMT1 tē ngjashēm me ato të rajoneve tē tyre tê origjinës sesa me ato të fèmijëve autokton. Gjithashtu, diferenca vihen re edhe ndęrmjet grupeve etnike qē jetojnè nê tê njej̀tèn zonè, shembull janē Izracli ku vihet re diferencē midis popullsisë hebraike dhe arabe (163) dhe Kanadaja ku regioni i Newfoundland ka incidencę mê tę lartë se regjoni i Kebekut, 36 pêr 100,000 né vit dhe 15 pěr 100,000 nê vit, respektivisht. (164) Po kêshtu, fèmijèt qê migrojne midis vendeve me diference incidence te DMT1, vazhdojne te ruajne incidencé te̊ ngjashme me ato teß originests sê tyre sesa me ate tẻ vendit ku jetojné. Shemball tipik janë femijĕt Italian qé migruan nga zona me misk shumê tê lartẻ (Sardenja) dhe zona me rrisk teٌ mesëm (Italia gadishull) ruajtên tę njèjtinn ritëm incidence te DMT1 me ato të rajoneve té tyre të origjinēs krahasuar me fëmijēt
 pacientēve me T1DM në̉ Japoni kané rrisk t̄̄ ngjashëm tē diabetit me binjakët dhe të afërmit e pacientēve në Shtetet e Bashkuara. (166) Ndryshueshmēria e madhe e incidences midis dhe brenda grupeve dhe etnive të ndryshme mund të lidhet me përbërjen ose predispozitēn gienetike, shpërndarjen globale të popullatave tē mëdha etrike, pozicionin gjeografik, faktorët mjedisor, madhësinë e popullatës apo grupit etrik.

1.3.9 Sëmundshmëria the vdekshmëria

DMTI karakterizohet nga sëmundshmeri e larmishme akute dhe kronike dhe vdekshmeri tex ulst ($\mathbf{1 6 7}$) Mbi 80% e vdekjeve lidhen me KAD dhe shumica e vdekjeve ndodhin pèr shkak tẽ edemès cerebrale dhe $5-10 \%$ i atribohen sëmundjes renale
(nefropatisè diabetike) dhe hipoglicemisé. (168) Sémundshmẽria dhe vdekshménia e femijëve dhe adoleshentēve tę diagncstikuar me DMT1 pēr herē tē parë̀ éshtē mē e lartë nê fèmijest e vegiêl pêr shkak tẽ vonesés sê diagnostikimit dhe tę kontrollit glicemik jo tê mirẻ (169) ně grupet me pabarazi đhe diferenca social-ekonomike dhe pamundesi pér tê patur akses mjekèsor (170) siç jané zezakèt jo-hispanikè dhe hispanike. emigrantst. (171)

13.9.1 Keto-acidoza diabetike

Shumẽ pacientë që diagnostikohen me DMT1 pēr herē tē paré prezantohen me KAD. KAD eshte komplikacioni akut mé i rëndésishêm dhe shkaku kryesor i semundshmẻrisê đhe vdekshmērisē së fémijēve me DMT1,(171) ku vdekshmëria varion nga 0.15% deri $0.31 \%,(\mathbf{1 6 8}, \mathbf{1 7 2})$ Shumica e vdekjeve nga KAD lidhen me edemẽn cerebrale.($\mathbf{1 6 8}$) KAD éshtë komplikacioni akut the i parandalueshëm. Rritja e vigilencës së personelit mjekësor për mundさ̈siñ̈e e shfaqjes sẽ DMT1 nẽ fëmijët e vegiell, mitja e ndëřgjegjësimit publik peer simptomat e hershme të diabetit, diagnostikimi monitorimi dhe trajtimi i hershëm dhe i perrshtatshëm i tij do ta ulë ndjeshëm incidencẽn dhe gravitetin e KAD dhe vdekshmérine lidhur me tę $(\mathbf{1 7 3 , 1 7 4})$

1.3.9.2 Hipoglicemia

Hipoglicemia konsiderohet si shkak i vdekjeve nè 5-10\% té pacientëve me DMTI. Hipoglicemia, kryesisht jatrogjenike, eैshtę njê problem real pěr njerz̉zit e prekur nga DMT1, pasi ndonjehere mund te jete fatale the pengon rivendosjen e kontrollit glicemik normal. (175) Rriskı i episodeve hipoglicemike lidhet me faktorêt qẽ rezultojnë̀ ne teprice relative ose absolute te insulinës, me faktoret tregues tè deshtimit autonom ku përfshihen pamjaftueshmēria endogjene absolute e insulinës, histori episode hipoglicemie të rëndè, pandjeshmëria ndaj ngjarjes hipoglicemike, the tendenca pēr të mbajutur vlera glicemie mè tē ulēta. (175)

1.3.9.3 Disfunksioni konjitiv

 konjitiv për shkak të kontrollit glicentik jo të mirë dhe episodeve hipoglicemike të influencojne nè zhvillimin e sistemit nervor. (169)

1.3.9.4 Ulje e jetëgjatësisē

Komplikacionet shoqëruese te̊ DMT1 qofshin akute apo kronike ndikojnẻ edhe nê jetëgjatësisë e individëve me diabet e cila vlersohet tē jetë $10-20$ vjet mē e shkurtër se e popullatës jo diabetike. (177)

1.4 TENDENCA E INCIDENCËS SË DMT1

Ně shumè vende tę botěs incidenca e DMTI ne̊ fêmijèt dhe adoleshentèt jo vetěm ěshtẻ ritur por po shfaq njé trend mjaft te shprehur. Prej 1965 deri né 2012 incidenca e diabetit tê tipit 1 nẻ fêmijēt eushtẽ rritur ndjeshêmm nga 9.44 nẻ 19.58, me pêrjashtim ndoshta te Amerikes Qendrore dhe Indise Perendimor. (28) Ne SHBA, Europe, Lindjen e Mesme dhe Australi incidenca rritet me 2-5\%. (178-195)
Rrițja eshtĕ mẻ shumè e dukshme né fèmijêt e grup moshës $0-4$ vjec, (150) në vendet nê zhvillim ose në tranzicion ekononik, (150-152) né popullata me gjenotipe HLAmisk te ulet, $(\mathbf{1 9 6}, 197)$ ne vende me incidence relativisht e ulet. (150)
Nēqoftëse do të vazhdojë kjotendencë, në disa rajone numri i rasteve tē reja me DMT1 do të ritet, në veçanti në fémijët < 5 vjeç ai do të dyfishohet. $(\mathbf{1 5 0 , 1 9 5})$ Nẽ disa vende trendi i mitjes së incidencès ka variacion ciklik sinusoidal çdo $4-6$ vjet, si model epidemik.. $(198,199)$ Mendohet se njē rol të rĕndësishëm né etiologjinë e sĕmundjes luajnë faktorët mjedisorē.

1.4.1 Situta lidhur me diabetin tip 1 në vendin tonë

Té dhénat lidhur me diabetin tip 1 nè vendin toně janẽ tè pakta. Nê kêtẽ kuadèr, u ndërmor studimi aktual me qellim evidentimin e karakteristikave epidemiologjike dhe Kinike të fërijēve me DMT1 si dhe shoqërimin e diabetit tip 1 me sëmundje të tjera antoimune.

1.5. PATOG.JENEZA E DIABETIT MELITUS TIP 1

1.5.1 Historia natyrale e diabet tip 1

Njohuritë mbi patogjenczën dhe historinē natyrore tè diabetit tip 1 janē rritur ndjeshërn, DMT1 shfaqet si rezultat i shkatêrnimi selektiv i qelizave beta insulin prodhuese në ishujt c Langerhansit në̀ personat gienctikisht tē predispozuar pēr shkak tē ndērveprimit kompleks midis faktorēve gjenetik, imunologiik dhe mjedisor. (3) Proçesi i shkatérrimit është progresiv, karaktcrizohct rga një periudhē e gjat乞̄ latente, muaj c vite në tê cilēn fèmija ęshtê asimptomatik dhe me glicemi normale. Periudha e gjatè latente eshtê reflektim se nga fillimi i procesit autoimun deri sa tê shfaqet hiperglicemia dhe manifestimet klinike duhet tę děmtohet njeè numër i madh i qelizave beta. (200) Gjatẽ periudhës latente subjeltet që̉ janẽ nẽ rrisk për diabet tip 1 identifikohen nëpërmjet markuesve gienetik, autoimun dhe metabolik. Markuesit gjenetik te diabetit tip 1 jané tê pranishěm qĕ nè lindje, markuesit immologjikè identifikohen pas fillimit tę proçesit autoimun ndërsa markuesit metaboliké shfaqen pas dèntimit apo disfunksionit të njē mase te̊ shprehur te qelizave beta the para se te̊ shfaqet hiperglicemia dhe simptomat (figura 1.2).

Figura 1.2. Peviudha e zloillinnit ta dabetit tip 1. (201)
Çrregulimi imunitar i lindur i ndihmuar nga predispozita gjenetike ështe e dhēna e serologiike e hershme e shkatęrrimit teٌ qelizave β; dmth, aminoacide tê ndryshuara dhe autoantitrupa qē lidhen me diabetin tip 1. Nē shumicēn e individēve, ndryshimet në sekretimin e insulinès dhe tolerancën ndaj glukozẻs ndodhin muaj deri në dekada para identifikinit të autantitrupave të shumtē anti ishullor.(202) Shpejtësia e dēmtimit ështē shumëe ndryshueshme, madje edhe ndēmjet personave me rrisk tè lartē me një ose më shumë autantitrupa. Nē disa persona, pēr arsye ende tè panjohura progresioni është aq i ngadalté saqee diabeti shfaqet pas shumë vitesh ose nuk shfaqin asnjēheré. (203-206) Shumicae pacientëve nè momentin kur diagnostikohen me DMTI pêr herê tě parě kanë ende qeliza- β normale; të cilat nē foshnjat dhe fèmijët e vegjël kanē mè shumë mundèsi tê rigjenerchen por jo nex adoleshentět dhe adultět. (201,207) Pankreasi i individëve tẽ diagnostikuar me DMT1 për herē tē parë $\sim 70 \%$ e ishujve shfaqin mungesë të plotë të insuliněs; (207,208) -20% e ishujve permbajnè insulin, 1% e ishujve me defiçit tē insulinēs janẻ tę inflamuar (insulitis), pjesa tjetêr e ishujve jañ̊ normal. (209, 2010) Gjatẽ fazěs preklinike, DMT1 karakterizohet nga proçese relapsi dhe remisioni tê shumta nẽ̃n ndërveprimin e qelizave T rregullatore dhe efektore derisa dëmtohet njê masë e madhe qelizash beta dhe qelizat e mbetura nuk sekretojné sasinë e duhur tê insulinēs, duke rezultuar nẻ shfaqjen e hiperglicemisê. Nga ana tjetèr qelizat beta normale té mbetura kane kapacitet te ulur rigjenerimi kur ato janẻ te ekspozuar ndaj hiperglicemisé, e cila njê faktor metabolik stimulues i sekretimit tę insulinẻs, por gjithashtu ështe glikotoksike. Pra, né DMT1 krahas defiçitit absolut tee insulinës kemi çrregullimn të sekretimit tē insulinës nga qelizat ende tē padëmtura beta normale. Kur vendoset kontrolli glicemik i duhur pas fillimit te trajtimit, këto qeliza mund pẻr teß
mbajnè nivelin e sekretimit tę C-peptidit për njễ periudhë kohore shtese. (211) Démtimi selektiv i qelizave β ruk shoqërohet me dëntimin dhe prekjen e funksionit të qelizave te tjera ishullore tê cilat jane normale dhe sekretoinè hormone; qelizat α sekretojne glukagon, qelizat δ sekretojne somatostatin the qelizat PP sekretojns polipeptidin pankreatik. (212) Shpesh simptomat e DMT1 shfaqen kur janê dêmtuar $90-95 \%$ teै qelizave β, por shfăqen edhe kur jane dëmtuar $2 / 3$ e qelizave beta. (212, 213) Qeliat β tè mbijetuara organizohen zakonisht në lezione lobulare, te̊ ngjashme me humbjen lobulare e melanociteve né vitiligo.(214) Mendohet se lidhet me rifitimin e tolerancess. Ndoshta qelizat T rregulluese ($\mathrm{T}_{\text {req. }}$) riten nē mumër ose qelizat T ndihmëse (T_{b})
 larté qelizash T CD8 HLA DR+, zhvillojnē diabet niērsa ata qē kanē më të pak numër qelizash mbeten normoglikemik. (215) Ndryshimet histolo-patologjike karakteristike nē DMT1 është infiltrati inflamator kronik nē ishujt e Langerhasit nê pankreasit, (216) mungesa e qelizave beta dhe paaftësia eqelizave β tê mbetura pēr tu rigjencruar, $(210,217)$ Tè dhēnat në lidhje me patogjenezën e diabetit tip 1 e kanè burimin nga analiza e mostrave të pankreasit, serumit dhe limfociteve të gjakut periferik të marra nga pacientēt. (218, 219) Ně ekzaminimin e kêtyre indeve janê parể nję sęrè defektesh funksionale né palcēn c kockave, në timus, në sistemin imunitar dhe qelizat β tē cilat sębashku kontribuojnē nē fiziopatologinẻ e diabetit tip 1. (5, 219-221) Madhěsia e pankreasit ně kohẽn e diagnostikimit tę dabetit tip 1 dhe ně periudhẽn para fillimit teß sêmundjes (autantitrupat janề tê pranishěm) ěshtë mè e vogèl pēr moshèn, pèr-BMI dhe the për të dyja sëbashku (moshên che BMI).(222, 223) Kjo vegori, e kombinuar me mungesën e insulitit, sugjeron se mekanizma tê shumtę patogjenetik çojnę në humbjen eqelizave β nẻ̉ diabetit tip 1. Nê ishujt e inflamuar brẽnda lezionit (insulitis) në rend zbritēs janē identifikuar qelizat T CD8+ (popullata mbizotēruese) e ndjekur nga makrofagest (CD68+), qelizat T CD4+, limfocitet B (CD20+) the qelizat plazmatike (CD138+). (213) Qelizat FOXP3 + (qelizat T rregullnese) dhe qelizat natyral killer janë tè rralla në këtè lezion. (4) Qelizat T CD4+ (Th1) efektore, nêpërmjet prodhinnit IL-2 nē sasi të mēdha, nxisin proliferimin dhe ekspansionin e qelizave T CD4+ (efekt autokin) dhe prodhimit të interferon-gama (IFN-g) drejtojnē përgjigien imuno-qelizore duke nxitur elspresionin e KMPI klasa I the II nga qelizat antigjen paraqitëse duke u bērē ndērmjetës i rēndësishëm i insulitit. Administrimi i antitrupave anti-interferon gama mund tè ngadalesojè shkatërrimin e qelizave ishullore. Induktues te fuqishëm te interferon gama janë dhe interleukin-18 dhe interleukin-12 dhe progresi i insulitit fillon paralelisht me çlirimin e ritur tę kętyre dy citokinave. (224) Qelizat T CD4+ efektore (Th2), te cilat sekretoine interleukin- $4,-5,-9,-10$ dhe -13 mbrojne kunder shfaqjes dhe avancimit te diabetit të tipit 1. Gjithashtu, gelizat Th2 jané të afta tê indukotojné shkatërrimin e qelizave ishullore, prandaj fillimi dhe progresi i diabetit tip 1 eshtê ndoshta nēn kontrollin e te̊ dy qelizave Thl dhe Th2, (225) Nje koncept mé i
pêrgithësuar êshtê se diabeti i tipit 1 A parandalohet nga njê ekuilibêr midis limfociteve T patogiene (proinflamatore) dhe rregullatore (supresore), (226) Një pjesê e madhe e limfociteve T te quajtura qeliza T rregullatore (T_{re}) shprehin markues CD4 dhe CD25 nē sipërfaqen e tyre the muk kané receptoré IL7. Treg në perrgithësi frenojné ase pakesojne induksionin dhe proliferimin e gelizave T efektore dhe janê te varur pér shfaqjen e njě faktori transkriptimi te quajtur FOXP3. Mutacionet e FOXP3 çjne̊ nĕ autoimunet neonatal vdekjeprurěs, duke përfshire edhe diabetin tip 1 nẽ tè sapolindurit. Kjo gjëndje, edhe pse jashtëzakonisht e rrallé, ështę e rënděsishme për t'u njohur pasi transplanti i palcēs së kockave mund ta ndryshojē atë. (227) Mutacionet e STAT3 një shkak monogjen i autoimunitetit, përfshi dhe diabetin tip 1. (228) Mutacionet de novo germline qē aktivizojnē STAT3 shoqërohen me sēmundjeve autoimune tē ndryshme me fillim tē hershëm, të tilla si diabeti tip 1 , disfunksioni automun itiroides the enteropatia autoimune. Këto tê dhëna theksojné rolin e rëndësishëm tē STAT3 në sëmundjet autoimune në kontrast me mutacionet inaktivizuese germline të STAT3 që rezultojnë nē sindromën e Hiperimmunoglobulinès E (IgE).
Roli i imunitetit qelizor - Ekzistenca e imunoglobulinave IgG drejtuar ndaj epitopeve tê autoantitigjeneve ishullor sugieron ndikimin e pjesêmarjes se qelizave T nể pērgïigjen autoimunc, Ndērsa roli i autoimunitetit nē patogienczën e diabetit tip 1 dhe zhvillimi i shpeshtê i autoantikorpeve nuk jané nĕ dyshim, ka tę dhěna nề mitje pěrr një rol te̊ madh tẻ imunitetit qelizor. Shfaqja e DMT1 nẻ një djalê 14 -vjeçar me agamaglobulinemi tê lidhura me X sugjeron qé limfocitet B nuk jané tê nevojshme pèr zhvillimin e grregullimit dhe se shkatêrrimi i qelizave beta pankreatike ndërmjetèsohet kryesisht nga limfocitet T. (229) Fakłi qě ky djalę nuk shfaçi diabet deri nê moshẽn 14 vjeçare mund tē sugjerojë se qelizat normale B lehtēsojné zhvillimin e diabetit, por mik janē doshmërisht tē nevojshme. Kjo mbēshtetet në njè studim nē rninjtè NOD me defiçit apsolut te limfociteve B ně tẽ cilęt incidenca e diabetit u ul nga 80% ně 30% the sëmundja u shfaq mē vonë nē kohë nē një moshē më tē madhe. (230) Epitopet e pērpunuara nē mēnyrē tè natyrshme tē autoantigjeneve të qelizave të ishullit janē target pēr qelizat T efektore dhe rregullatore në kontrollin e përgiggieve autoimune specifike tê qelizave beta pankreatike. (231) Nē veçanti, epitopet e përpunuara nê mënyтë natyrale alel specifike HLA klasa e II njihen nga qelizat T CD4t, qē korrespondojnë me domenin intraqelizor te LA-2, u identifikua pasi antigjeni IA-2 natyral u nxorr nga qelizat B tę transformuara nga EBV ndèrsa peptidet u perftuan dhe u analizuan me mas spektrometri. (232) Një pjesë e madhe e llojeve të qelizave dendritike mund të pérpunojné dhe prezentojè LA-2 solubil ndaj qelizave TCD4+ pas kulturès afatshkurtěr, por vetēm qelizat dendritike plazmocitoide, intensifikojnê (deri nẻ 100\%) paraqitjen e autoantigjenit nè prani tę IA-2 té serumit tê pacientit. (233) Njé pjesẻ e madhe e plazmocitoideve tê qelizave dendritike êshté e mbipěrfaqêsuar né giak afêr shfaqjes sê diabetit tě tipit 1 dhe tregon njee attési tě veçantě pèr tě kapur komplekset imune
autoantigjenike tẽ ishujve the rit aktivizimin e qelizave T CD4+ për tes kontrolluar apo udhēhequr nga autoantigjenet specifike. Kjo sugjeron njè rol sinergiik proinflamator pêr qelizat dendritike plazmatike othe autoantikorpeve LA-2 nè diabet tip 1. Te marra sé bashku, kêto vẻrhgime mund tê çojnẻ nể identifikimin e epitopeve tẻ reja tê pěrpunuara natyrisht që nuihen nga qelizat T CD4 + , tẻ cilat mund tè pèrfaqésojnê agjentẻ terapeutikẻ potencial, qofte në formen native ose si ligand antagonist té peptideve tě ndryshuara, pėr trajtimin e diabetit tê tipit 1 .
Imitimi molekular - Faktorět fillestar tę pảrgiigjes imune nuk njihen mire. Njê mundēsi ështē imitimi molekular pēr shkak të ngjashmērisë ndërmjet GAD the një agienti infektiv siç ěshtē vinus Coxsackie B (s hih roli i viruseve). Nję model alternativ pêr mënyrēn se si kjo mund të ndodhẽ êshtē studimi i shprehjes see një proteine specifike beta 38 kDa në qelizēn beta nè minjtē BB . (234) Kjo protcinc̄ ĉshtẽ c pranishme në ishuj qé nē lindje dhe gjatë githē kohès më pas në llojet që jané rezistente ndaj zhvillimit tē diabctit. Protcina nuk shprchet deri në ditēn e $30-t \bar{e} ~ n e ̄ ~ m i n j t e ̄ ~ B B ~ t e ̈ ~ p r i r u r ~$ ndaj diabetit: Shprehja e vonuar e kēsaj proteine mund tē çojē nē humbjen e vetëtolcrancés dhe inicimin e njē përgigicje autoimune anti-qelizave beta.
Roli i timusit dhe organeve limfoide - Ekzistojnẽ̃ tẽ dhena qe sugieroinè se vetëantigjenet (molekula te cilat veprojnë si antigien rē një organizēm ndaj tē cilit organizmi èshtë tolerant por qĕ̉ nxisin formimin e antikorpeve nề njê organizëm tjetêr) shprehen natyrshëm nē timus dhe organet limfatike periferike. (235-237) Toleranca ndaj vetê molekulave tè kufizuara nè inde (tissue-restricted self-molecules) besohet tê fillojè né nivelin e timusit me selektim negativ, ku pakèsimi apo eleminimi i timociteve me receptorēte qelizave T (TCR) shfaqin afinitet tę fortë në drejtim te̊ vetę molekulave që shprehen gjatë maturimit te sistemit imun. (238-240) Gjeni i insulinẻs üshtë një nga gjenet e studiuara më gjērē në njerëzit the minjtë qē ekspozojnē shprehjen timike si dhe shoqërimin e varur nga ekspresioni i qelizēs beta me predispozite diabeti tip I. (236, 241 -244) Krahas insulinēs, në timus shprehet dhe autoantigjeni i qelizave ishullore 69 kDa (ICA69), njē proteinë neuroendokrine e shënjestruar nga përgjigjet autoimune në T1D të njeriut dhe nē minj joobezē diabetik (NOD). (245-247) Gjithashtu, ēshtë sugjeruar që nivelet timike të ICA69 tē ndikojnë né predispozitēn ndaj T1D nëpërnjet njē mekanizmi tẻ ngjashën me atē tē treguar pēr insulin VNTRs. ($\mathbf{2 3 6}, \mathbf{2 4 8}$) Kjo hipotezē bazohet kryesisht nē studimet e mēparshme që tregojnë se IA2, GAD dhe ICA69 transkriptohen nè timusit të njeriut giatĕ jetès fetale dhe fèmijërisè, (236,249-251). Ekzistenca e variacicneve tè sekuencēs së ADN-së nē minjtë NOD me mundêsi për efektet pẽrkatêse té funksionalitetit mbi shprehjen e gienit Ical në timus. Variante tẽ tilla nẽ promotorin Ical mund tê çojnê nể një probabilitet te̊ ritur tê déshtimit pèr tê përzgjedhur negativisht klonet e qelizave T sensitive ndaj ICA69 tê timociteve qé po formohen apo zhvillohen. (251)

1.5.2 Markuesit gjenetik të diabetit tip 1

DMT1 éshtẽ njể sęmundje poligjenike komplekse, e cila nuk trashẻgohet sipas njê modeli specifik.(252) Deri mè tani njihen afro 40 lokuse, prej te己 cilëve të paktēn kater prej tyre janè mirè pễrcaktuar si tê pęrfshirè nê rriskun e zhvillimit tè diabetit tip 1 si HLA, INS, CTLA4, the PTPN22. (252) Rendessia the roli i komponenteve gjenetik né procesin patogjenik tě shfaqes tẽ diabet tip 1 mbështetet nē konkordancèn e lartẽ nẻ binjaket monozigot, (65%) (253) né historine familjare pczitive (20\%) (254) dhe né diferencat etrike tē incidencēs. $(\mathbf{2 5 5}, \mathbf{2 5 6})$

1.5.2.1 Gjenet HLA

Pavarěsisht natyrès multigjenetike tě DMT1, gjenet mè tè njohura, mê predispozuese qē mbartin mē shumē mriskun për diabetin e tipit 1 janë gjenet nē regionin HLA (amtigjeni leukocitar human). Gjenet në regonin HLA ndodhen nè kromozomin 6p21.31 me njē shtrirje prej $3 / 4 \mathrm{Mbp}$ gjatësi (figura 1.3). (257) (232-234) Regjoni perrmban mè shumé se 200 giene tè identifikuara, ku shprehen mẽ shumê se gjysma.

Fignar L.3. Paraqifle skem atike e regjonit HLA në knomoçomin human 6 me loknset kIsaseas I,II dhe III; gjenet \& njohara qĕ shoqërohen me DMT1. Variacionet gieneti้k në këto giene përcaktojnë miskun e thvilitimit te DMT1. Buvim. (257)

Gjenet HLA janè përgjegięse për afêrsisht $40 \%-50 \%$ tè rasteve tę shfaqjes sè diabeti i tipit 1. (258-260) Gjenet HLA kodojnĕ proteinat kryesore tẽ kompleksitetit teٌ histokompatibilitetit (KMPI) te njeriu, prandaj dhe KMPI referohet edhe si kompleksi HLA. (258, 259) Proteinat e koduara nga kẻto gjene shěrbejně si antigjene, tę cilat fillimisht u zbuluan nę sipërfaqen e leukociteve, njihen si antigjene leukocitare humane (HLA), janě unike, specifike pęr çdo njeri. Gjenet HLA-tę pęrveç rolit mbrojtęs ndaj infeksioneve, kancerit, hedhjes sē transplantit tē organeve, (261) janë pêrgjegjëse në shfaqjen e njě sěrě sěmundjesh autoimune pęrfshi edhe sërmundje endokrine te̊̀ tilla si diabeti i tipit 1. $(\mathbf{3}, \mathbf{5}, \mathbf{2 6 2} \mathbf{2 6 3})$ Megjithëse alelet HLA predispozuese tē DMT1 janë
shumë tẽ shpeshta për shfaqjen e DMTI éshtẻ thelběsore gjenotipi HLA (kombinimi i aleleve HLA tē trashëguara nga tē dy prindērit). (264, 265) Sistemi HLA përbëhet nga Nasa tē ndryshme; I, II dhe III tę cilat kanê funksione të ndryshme. Gjenet HLA klasa II kodojnë proteina qẻ shprehen nẻ sipërfaqen e qelizave antigien paraqitëse (antigiene ekzogjene) si makrofaget tê cilat lidhin peptidet antigjenike dhe ja prezantoinẻ ato né qelizave T, duke krijuar kështu njé ''kompleks 3 molekular''(HLA-peptid-TCR) dhe inicojné perg jigjen imune (figura 1.4).

 antigieni. MHC: kompleksi madlhor i paitue shmërlise; LFA-3: antigioni-3 funksional kimfocitik; IL2R: receptori i interloukin-2.

Lidhja MHC-antigjen lejon atę tê prezantohet tek receptori i qelizess T pèt antigienin, tê cilat janè qelizat efektore (qeliza qẽ veprojnê nẽ përgiigie teٌ njè stimuli) kryesore tê proçesit autoimun shkatěrrues. Antigjeni lidhet nẻ molekulat MHC klasa II mbiqelizat antigjen-paraqitěse (siq janê makrofagẽt) Kjo lidhje lejon qẽ antigieni tę prezantohet nê receptorst e antigjenit mbi qelizat T CD4+ autoreaktive cse qelizat T helper, tê cilat neै DMT1 iniciojně dëmtimin autoimun tè qelizave beta pankreatike. Krahas kèsaj, lidhja respektive e proteinave B 7 dhe LFA-3 mbi qelizat antigjen paraqitese ndaj CD28 dhe CD 2 mbi qelizat T janë rugĕt kryesore bashkëstimuluese qẻ rritin mẽ tej aktivizimine qelizave T. Gjithashtu, nē përgjigien imune marrin pjesē molekula tē tjera siç është lidhja e interleukines-2 nē receptorin e saj (IL-2R). Gjenet HLA janë shumë polimorfike, qē do të thotē se ato kanë shumē alele të ndryshme, duke i lejuar ata të rregullojnë sistemin imunitar tē fituar. Disa sēmundje të shoqëruara nga HLA lidhen me polimorfizmin e gieneve qé kodojnė molekulat e klasës II. Gjenet HLA të klasës II kodojnë 3 proteina madhore dhe 2 minore. Kombinimi i gjeneve tē klasës II formon receptorët proteinikë heterodimerikē (zinxhiri α dhe β) që shprehen nē mēnyrë tipike
né sipërfaqen e qelizave antigjen paraqitése. Proteinat madhore té klasěs II tẻ KMPI ndodhin vetëm nē qelizat antigjen-paraqitëse, qelizat B dhe qelizat T. (266) Zinkhirët alfa dhe beta né molekulèn e KMPI formoinẻ njee hapēsiré peptid-lidhe̛se nẽ tê cilin lidhen antigjenet e përfshira nẻ patogjenež̌n e diabetit té tipit 1 . Aftësia e kertyre molekulave tẻ klasēs II për tê paraqitur antigjenin varet piesêrisht nga pérbêrja aminoacide e zinxhirěve te̊ tyre alfà dhe beta. Zëvendessimet nẽ njé ose dy pozicione specifike mund tê rrisin ose zvogêlojnẻ̉ dukshěm lidhjene autoantigjeněve pērkatēs dhe si rijedhojëu predispozitěn ndaj diabetit tee tipit 1. $(\mathbf{2 6 7}, \mathbf{2 6 8})$
Molekulat e klasës Il pērfshihen në shkatērrimin imm të qelizave beta pankreatike sepse ato marrin pjesé né prezantimin e antigjenit ndaj qelizave $T_{\text {helpa }}$ tĕ cilat iniciojné reaksionin imun. Këto antigienë tē veçantë stimulojnë shumëzimin e qelizave $\mathrm{T}_{\text {belpa }}$ (tē quajtur edhe qeliza T CD4+), të cilat nga ana c tyre stimulojnë qelizat B-prodhuese të antitrupave për tē prodhuar antitrupa ndaj njê antigjeni specifik. Vetē-antigjenet frenohen nga gelizat T rregulluese.
Gjenet HLA klasa II mbartin rriskun gienetik më të shpeshtè për shfaqien e DMT1. (269) dhe pērbëhet rga lokuset DR, DQ dhe DP. Përcaktuesit gjenctikë madhor të DMT1 janẻ polimorfizmate gieneve HLA qes̉ kodojnę lokuset DQ, DR dhe né njê masẻ më tē vogēl DP. (263) Kombinimet alclike specifike tē gienotipcve HLA tē klasës II, HLA DR/ DQ (DR3, DR4) njihen gierěsisht si faktoreैt misku gienetik madhor i progresit nè DMT1. Rrisku ęshtẽ mẽ i lartê nê gjenotipin DR3/DR4. (270) Predispozita gienetike kodohet kryesisht nga kombinimet specifike tê aleleve nê lokusin DRBI, DQA1 dhe DQB1 né kompleksin e HLA. Haplotipet DR-DQ që̉ mbartin miskun mẽ teٌ larté jane DRB1*03:01-DQAI*05:01-DQB1*02:01(DR3), DRB1*04:01/02/04/05/08-DQA1*03:01-DQB1*03:02/04 (ose DQB1*02; DR4), DRB1*0401-DQA1*0301DQB*0302 the DRB1*0402-DQA1*0301-DQB1*0302 pasuar nga haplotipet DRB1*0404-DQA1*0301-DQB1*0302 the DRB1*0801-DQB1*0401-DQB1*0402. Ndērsa, alelet HLA tē tilla si DRB1* 1501 - DQA1 * 0102-DQB1*0602 (DR2), DRB1*1401-DQA1*0101-DQB1*0503 dhe DRB1*0701-DQA1*0201-DQB1*0303 konsiderohen mbrojtie ndaj sëmundjes. $(\mathbf{2 6 3}, 270)$ Gjenet HLA DPAI dhe DPB1 janë grupi i tretē i lokuseve të klasës HLA II. Ato kodojnè antigjenin DP dhe kanë një kapacitet imuncstimulues dhe nivel ekspresioni më tē ulët sesa antigjenät e tjerē të Kasës II (271) Studimet nē lidhje me shoqërimin e HLA-DPB1 dhe DMT 1 kanē treguar lidhje te shumte me rezultate kontradiktore. Alelet DPBI*02:01, *02:02, *03:01, *04:01, *04:02, *17:01 konsiderohen si alele predispozuese në popullata me prejardhje etnike te ndryshme dhe alelet DPBI*01:01, *02:02, *04:01, *04:02, *17:01 konsiderohen mbrojtẻse. (272-279) Gjithashtu, pêr sa 1 përket aleleve HLA DPB1, (280-282) DPB1*02:02 dhe DPB1*03:01 e misin riskun e shfaqjes sé semundjes nđërsa DPB1*04:02 e ul riskun. Mê shumẽ se 90% e pacientėve me diabet tip 1 janë homozigot pěr haplotipin DR3 (i referuar si DR3-DQ2) ose haplotipin DR4 (i referuar
si DR4-DQ8) dhe 30% e pacientevve kans̃ te dy haplotipet (heterozigotë DR3/DR4), Rrisku predispozues është më i madh rëe formën heterozigote (DR3/DR4) sesa pēr secilin nga haplotipet homozigot (DR3/DR3; DR4/DR4). (283) Prevalenca e gieneve "diabetogjen" varion nga etnia. Kjo shpjegon nẻ̉ njě masẽ tẽ madhe pse DMTI ështẻ mé i zakonshëm nể vendet Skandinave dhe Sardenję dhe jo nê Kině. (284)

1.5.2.2 Gjenet jo-HLA

Gjenet HLA janẽ komponent predispozues i rendessishém por jo te mjaftueshēm pēr tê shfaqur điabetin tip 1. Kjo nënkupton se zona të tjera në gjenom predispozojnë shfaqjen e diabetit tip 1. Nje komponent predispozues i rēndësishëm janẻ gjenet jo-HLA, polimorfizmat e tē cilëve e mbartin kētë efekt predispozues vetēm né prani tē aleleve specifik të gieneve HLA, duke sugjeruar në shumicën e rasteve trashēgimi poligjenike. (285) Lokuse me rrisk të rritur për diabetittip 1 janë polimorfizmat në gienin e insulinēs (INS) pèr VNTR e insulinēs, gjenin e antigjenit-4 të limfociteve T citotoksike (CTLA4), gjenin e protein tirozine fosfataza i jo-receptonit tip 22 (PTPN22) dhe gjenin e IL2RA, helikaza e induktuar nga interferoni, gjerin e receptor IL2 (CD25), gjeni si lektina (KIA0035), gjenin e ERBB3e dhe gien i padefinuar nẽ 12q), (252, 286-288) $\mathrm{BACH} 2, \mathrm{PRKCQ}, \mathrm{CTSH}, \mathrm{ClQTNF} 6) .(289)$

1.6 MARKUESIT AUTOIMUN TË DIABETIT TIP I

Një tipar dallues i diabetit tip 1 është prania e autoantitrupave anti autantigieneve të qelizave β (290) Nuk ka konsensus se kush ështę autoantigjeni target i parën ně DMT1 por sugjerchet se qee né fillim te proçsit autoimun kunder qelizave beta pankreatike mund tē ketē ≥ 3 autoantigiene. (232) Autoantigjenet (tabela 1.7) ndaj tè cilëve nderveprojne autoantikorpet mendohet se luajne rol tē rëndësishëm në fillimin ose progresin e dēmtimit autoimun dhe përcaktojne shkallēn e dëmtimit té qelizave beta. $(4,291)$ Sa mê i madh lezioni i qelizave beta, aq mé shumé antigjene shprehen, duke e mbajtur proçesin dēmtues aktiv $(232,263)$

Tabela 1.7. Audoantigjenet turget te autoautikorpove ne DMTL.

Insulina
ICA
Giutamic acid decarboxylase
Insulinoma associated antigens 2 (alpha and beta)
ZriT8 (zinc transporter)

Nē personat me DMT1 janē identifikuar një seré autoantigjenesh si insulina/proinsulina (IAA), (290) autoantigjeni i qelizave tē ishullit 69 kDa (ICA69), acid glutanik
dekarboksilase (GAD65), (292) proteina tiroziné fosfatazè qé shoqěron insulinomèn 2 (1A-2), (293) transportuesi i zinkut Sle30A8 me vendeoje nē granulat insulin sekretore tę qelizẻs- β (ZnT8) (294) proteina e lidhur me nẽn-njẽsinê katalitike tê glukozês-6fosfatazěs (IGRP), kromogranin A (ChgA) receptori i insulinẽs, proteinat e shokut te nxehtessise, antigienet jun-B, CD38, periferin the proteina acidike fibrilare gliale (GFAP). (295)
Insulina / Proinsulina - Shfaqja e hershme e antitrupave anti-insulinĕ sugjeron që insulina ështę autoantigieni i rěndęsishěm, targeti primar i mundshěm për autoantikorpet. ($\mathbf{1 5 8}, \mathbf{2 4 1}, \mathbf{2 9 6}, \mathbf{2 9 7}$) Segmenti i aminoacideve 9 deri 23 i vargut B (B923) i peptidit te insulinés $(\mathbf{2 4 1}, \mathbf{2 9 8})$ esshte epitopi dominant the autoantigjeni madhor target (299) pêr limfocitet periferike T CD8+ patogienike the T CD4, (241) respektivisht. Këto limfocite prodhojnẽ citokinën IFN-gama proinflamatore (të identifikuara me metodēn ELISPOT). (298) Njē e dhēnë tjetēr qē tregon rëndēsinë e insulinēs si autoantigjen ēshtê sé, dēmtimi i gjenit tê insulinēs (sipas modelit të diabctit né minj̣tē NOD, điabetik jo oobez) ēshtē i rēndësishëm, madje vendimtar nē zhvillimin spontan të insulitit dhe progresin drejt sēnundjes dhe se administrimi i insuliñ̄es ose zinxhirit tê tij B gatę fazès prediabetike mund tę parandalojê ose vonojẻ diabetin nẻ njerëzit e predispozuar. ($158,241,300$) Kjo karakteristikē po shihet si mundēsi për zhvillimin e terapisë me bazě antigjenike Pęrgiigia autoimune ndaj proinsuliněs perrhapet mé pas tek autcantigjenēt e tjerẻ, siç ęshtę proteina specifike e lidhur me nënnjèsinẻ katalitike té glukozès-6-fosfatazess e ishujve (IGRP).(158) Autoantikorpet anti insulin (IAA) janë shpesh tę parat që shfaqen nè fèmijêt në misk për tê zhvilluar DMT1 qẽ nga lindja dhe pěrqendrimi i LAA korrelon me shkallęn e progresimit tê sêmundjes. (301) Disa prej kētyre fémijēve më pas zhvillojné autcantikorpe ishullore tę shumte dhe diabet tip 1. Gjithashtu, administrimii i insulinës subkutane shoqërohet me shfaqien e antitrupave anti insuline, prandaj antikorpet anti insulin te matur rreth dy javë pas injektimit tē insulinēs nuk mund të pêrdoren si markues të diabetit me ndërmjetësi imune (tipi 1A). (297) Kjo e dhēnē e kombinuar me njē serë tè dhēnash të pavarura mbēshtesin nocionin nē rritje që pro-/inulina ēshtē autoantigjeni kryesor nẻ sēmundje; (302) një koncept që mund të shpjegojë pjesërisht humbjen selektive të qelizave β në dabetintip 1 .
Acid glutamik dekarboksilazë̈ (GAD). Enzima GAD (një proteinē 65 kD) është një tjetèr autoantigjen i ręndēsishĕm ndaj tê cilit zhvillohen autoantitrupat nê njerẽzit qeẻ zhvillojnē dmt1. Enzima GAD giendet në nivele tē médha në qelizat beta pankreatike por ěshtè e pranishme dhe ne sistemin nervor qendror dhe testikujt (303) Antitrupat anti GAD janẽ tẽ pranishěm nể rreth 70% tẽ pacientève me diabet tip 1 nẻ kohẽn e diagnozẻs. Autoantitrupat anti GAD jane gejetur né sindromin Stiffman, njé q̧rregullim i rrallë neurologjik por me njè koincidence e lartè me DMT 1. (303) Roli si autoantigjen patogien i GAD mbështet dhe nga tè dhënat se injeksione të peptideve GAD
ngadalěsojnẻ progresimin nę diabet. (304)
Proteina 2 e lidhur me insulinoma (IA-2). Proteina IA-2 është një autoantigjen ishullor qé vihet re nẻ pacientët e sapo diagnostikuar me DMT1 dhe personat né rrisk. Proteina IA-2 «̌shtẽ protein granulare e membranès e cila pěrmban njẻ fragment intraqelizor (IA-2ic) i cili me shumé gjasa pêrmban epitope imunodominante sepse shumica e pacientẽve me DMT1 që kanẽ autoantikorpe ant IA-2 kañ̃ edhe antikerpe anti IA-2ic. $(\mathbf{3 0 5}, \mathbf{3 0 6})$ Në pacientět e diagnostikuar me diabet tę tipit I pěr herè tê parè antitrupat anti IA-2 dhe dhe IA-2ic zakonisht shfaqen mè vone se autoantitrupat e tjerě ishullor me shpeshtës 62% dhe $6 \% \%$, respektivisht(306) Autoantitrupat IA-2 bashkë me autoantikorpeve e tjereٌ (IAA, GAD, ICAs) kane vlerẻ ne parashikimin dhe progresionit të diabet tip 1. Njē nga parashikuesit më të mirë të progresionit nē diabet tip 1A ēshtē shprehja e dy ose tre autoantitrupave: GAD, IA-2 ose autoantitrupat e insulinès. (307)
Transportuesi i zinkut ZnT8. Transportucsi i fluksit të kationeve të zinkut (ZnT8) është një autoantigien i cili ēshte izoluar né $60-80 \%$ e pacientēve diagnostikuar me diabet tipi 1 për herē të parē (294) dhe nē 26% c individēve me diabet tip 1 të cilët nuk kane antitrupa anti insulines, GAD, IA-2 dhe ICA. Nê Studimin e Autoimunitetit te Diabetit në tē Rinjte (DAISY), nē fémijēt që shfaqën diabet, autoantitrupat c ZnT8 u shfaqen mé voné se autoantitrupat anti insulin, (294) dhe zhduken shumé shpejt pas fillimit te diabetit. (308) Qelizat pankreatike beta te̊ njeriut kane̊ përmbajtje te̊ lartê zinku dhe përqėndrimi më i madhi zinkut ndodhet granulat sekretore. Pikërisht ZnT , produkti i gjenit SLC30A8, ndërmjetẻson kapjen e zinkut nê granulat sekretore teß insulinēs brenda qelizave beta tê pankreasit.(309) Gjetja e polimorfizmit brenda lokusit SLC30AB në pacientët me diabet tę tipit 2 sugjeron se ndryshimet nẽ funksionin e këtij geni mund të rezultojnë nē sekretim dhe/ose përgiigie anormale tē insulinès.
Profili lipidik dhe metabolitet. Profili i lipideve dhe metaboliteve té tilla si, niveli i ulur fosfatidilkolines ne lindje, ulja e triglicerideve dhe fosfolipideve eter antioksidues dhe mitja e lizofosfatidilkolinēs proinflamatore disa muaj para se tē identifikohen autoantitrupat në serum mund té shërbejnē si markues për diabetin tipit 1 qē po shfaqet. (310) Gjithashtu nē personat që zhvilluan autoantitrupa lidhur me diabetin tip ljanè parē pärqendrime tē larta tè triglicerideve me zinxhirë jo normal the fosfolipideve që pērmbajne acide yndyrore të pangopura (poli-pasaturuar) dhe përqendrime të ulëta tē metioninës. (310) Ndërsa autcimuniteti nè diabetine tipit I progreson nga aktivizimi fillestar nè njé gjendje kronike, shpesh ka rjë ritje nē numrin e autcantigjeneve të ishujve të shënjestruar nga qelizat T dhe autcantikorpet. Kjo giendje quhet "petrhapje e epitopeve". Disa observime tregoině se pêrgiigjet e autoantikorpeve tê ishujve te drejtuara ndaj autoantigjenỉve tê shumtë shoqërohen me progtesion nẻ sëmundje tê dukshme. (307) Sé fundi, mendohat se autcimuniteti i hershêm nê diabetin tip 1 mund tê sulmojể elementêt e indit tê sistemit nervor, duke ng̣itur konceptin sè në përgjigjet imunologiike patogjenetike mund të mos
jenè ekskluzive e qelizave beta.(311) Sidoqofte, mbetet tẻ vêtetohet nēse prania e pērgiigjeve serologiike ndaj antigjeneve neural tè supozuar janë parashikues për zhvillimin e neuropatise se fibrave té vogla (autonom dhe / ose somatik) dhe pêr progresimin klinik tê diabetit tip 1. Autoantikorpet mund te identifikohen gjatè fazzes preklinike (markues te hershém) the persistojně per muaj-vite para shfaqjes sě simptomave. (20) Natyra autcimune e DMTI ẻshtê e mirě perrcaktuar, por mbetet mister pse qeliza beta e pankreasit eshtè target specifik dhe nëse qeliza beta êshtè targeti i vetẻm i shikatèrnimit imun(vrasje) apo njé kontribuese nè vetẻ-shkatěrrim (vetẽvrasje). $(\mathbf{2 9 2}, \mathbf{3 1 2})$ TË dhěnat e hershme per autcimunitetin nê pacientët me ciabet tip 1 vijnë nga ekzaminimi me imunofloreshencë i cili tregoi se plazma e pacientëve té diagnostikuar me diabet tip 1 për herë tẻ parë ndërvepronte me qelizat e ishujve pankreatik të Langerharsit(303, 313) Autoantitrupat e z̋uluar në gjashtē muajt e parc̈ janc̄ e kanc̄ originën nga transferimi placentar sepse proçesi autcimun mund të fillojē in utero, megjithëse mallē. Nē 17% të rasteve mund tē jetë i pranishēm qē në̀ lindje tē paktēn njè autoantikorp (GAD, LAA ase ICA512), krahasuar me 4% të fëmijëve të popullatës së përgithshme. (314) Fēmijēt në rrisk mé tē madh dhe progresim më tē shpejtë drcjt shfaqjes së DMT1 janē ata që shfacin autoantikorpe brēnda 2 viteve tê para tê jetês dhe autoantikorpe tê shumtę. (269) Nděrsa fèmijêt que shfaqin autcantikorpe pas moshës 2 vjeç dhe shfaqin më pak autcantikorpe tẽ shumtë dhe kanë progresion mè tẻ ngadaltẽ drejt shfaqies sê DMT1. (269) Mé shumẽ se 90% e individève me diabet tip 1 prej momentit te diagnostikimit pèr herè të parě kanè njè ose më shumé autoontizupa tể tillé. (218) Autoantitrupat përveç vlerés diagnostikuese tę DMT1 dhe praltike pasi ndihmojne né parashikimin e fillimit të manifestimeve klinike, (20) ndihmoine né identifikimin e njerêzve nè misk të rritur pĕr shfaqjen e DMT1. Testimi periodik për autoantitrupa anti ishullor ndihmon nê vlerésimin e rriskut te diabetit nē fèmijët qé kanë prindër me diabet tip 1. Matja e autoantikorpeve ishuilor ështē domozdoshmêri nẻ depistimin e individēve nề rrisk pẻr shfaqjen e DMT1 nẻ te̊ afêrmit e shkallēs së parē ose popullatèn e pērgithshme. Prania e dy cse më shumē prej kētyre autcantikorpeve tē ishujve përdoret si kriter pèrfshirēs për testet e parandalimit të diabetit të tipit 1 siç janë ato të mbēshtetura nga rrjeti TrialNet. (315) Farniljarët dhe të afërnit e pacientëve me DMT1 (histori familjare pozitive) kanë risk tè rritur për tè shfaqur diabet, Ky rrisk është 0.4% kur nuk asnje histon familjare; $1-4 \%$ kur ēshtë e prekur nēna e pasardhësve, $3-8 \%$ kur ēshtë i prekur babai i pasardhēsit, (316-320) deri nē 30\% kur janē té prekur tee prinderrit; $(\mathbf{3 2 1 , 3 2 2}) 3-6 \%$ kur éshtè i prekur binjaku dizigotik dhe 8% binjaku monozigot. Binjaku monozigot ka 30% misk tē shfaci DMT1 brēnda 10 viteve pas diagnozés sę binjakut tě parě dhe 65% konkordancé deri nê moshèn $60 \mathrm{vjeç}$. ($\mathbf{2 5 3}, \mathbf{3 2 3}$) Rrisku i shfaqjes seẻ diabetit nẽ binjakēt monozigotē dhe te afërmève tê trezit tẽ parè tê pacientëve me DM TI lidhet mé shumè me diferencat gjenetike sesa faktorèt e mjedisit, (166) Gjithashtu, predispozita gienetike shihet edhe ne faktet se riisku kumulativ i shfaqjes diabetit tip I në familje éshtë 10% (324) dhe $>20 \%$ kur në histori familjare zgjerohet dhe
perrfshihet brezi i dytě apo tẻ trete. (325) Rrisku kumulativ i diabetit pér fémijèt < 15 vjec, eshte mē i madh në vëllezēnit/motrat HLA-identik DR3-DQ2/DR4-DQ8 (17\%) krahasuar me ata qê nuk kanẽ asnjè ose nję̧ haplotip (6%), (326) nẻ̃ vêllezẽnt apo motrat e njè anêtari te familjes i diagnostikuar nè moshẻ mẽ tê re, diabet paternal i diagnostikuar nē moshê tê re dhe mosha prinderrore e madhe. $(316,326,327)$ DMT1 mund té shfaqet ne̊ fèmijèt pa histori familjare pár diabet. Depistimi i popullateve me misk tel ulett (prevalenca e pertlogaritur $=1.2-1.5 / 1000)(328)$ pèr tê parashikuar shfaqien e DMT1 ěshtê njễ ndęrmarrje e véshtiré sepse ata mund tẻ rezultojnê pozitiv né testet e depistimit pĕr një nga autcantikorpet (GAD, LAA, IA2, ICA) né testet e mētejshme ciagnostikuese vihet re se ata ruk zhvillojnẻ sėmminde. (329) Fëmijęt qě shfaqin autoantitrupa në moshê tě vogel đhe tĕ shumtë në numër janē nē risk mē të madh për dhe progresim më tē shpejtë tê shfaqjes sē diabctit té tipit 1. (294) Rriskui shfaqjes dhe progresimi mêi shpcjtë në DMT1 êshtē mē i lartë në subjektet me autoantikorpe të shumtë (40% kundrejt 3% në ato me njē autcantikorp) dhe nē ata që shfaqin autoantikorpe në moshē tē vogēl. Fémijēt që shfaqin autcantikorpe para moshës 9 muajsh, 50% shfaqin diabet brenda dy viteve krahasuar me 7% nē ata q̧̈ shfaqün autoantikorpe tē shumtē në moshēn 5 vjeçarc. (269) Rriskui shfaqjes dhe progresionit tę DMT1 Eshte i lidhur me mumrin dhe titrin antikorpeve dhe moshĕn e shfaqjes se tyre. Autoimuriteti ndaj qelizave beta mund të indultohet nê muajët e para të jetës dhe autoantikorpet tě shfaqen që në moshěn 6 muajsh me njè incidences kulmore para moshës 2 vjeç. (330, 331) Fěmijêt qee zhvillojnẻ autoantikorpe brEnda moshës 2 vjeç Zivillojné autoantikorpe te shumta dhe progresojne mě shpejt drejt diabetit tip 1 (269) Ndërsa fèmijęt qề zhvillojné autcantikorpe pas moshés 2 vjeç shfaqin mé pak antikorpe tê shumtę dhe kanē ecuri mé tê ngadaltê drejp shfaqjes klinike tẽ diabet tip 1. (269)
Antitrupat anti LAA-është pothuajse gjithmone autoantikorpi i pare qee shfaqet dhe indikohet për të parashikuar kohën e fillimit tē diabetit tip 1, veçanërisht tek fëmijët < 5 vjeģ ndërsa autoantitrupat e tjeré si ICA, GAD ose IA-2 shfaqeshin mè vonẻ. (332) Rriskui diabetit tē tipit 1 ēshtë relativisht i ulët vetëm me LAA dhe më i lartë me praninë e autoantikorpeve tē tjerë (GAD, IA-2 dhe ICA). (333-337) Fënijēt që kanë vetëru një autoantitrup, deri në moshën 5 vjeç, 1.8% e tyre shfaqin diabetin e tipit 1 , dhe ata qe kanë ≥ 2 autoantitrupa prej dy vjetësh, kanë rrisk 50% pēr të shfaquu diabet tip 1 den nē moshën 5 vjeç. (338)

- Antitrupat anti LA2- fënijēt të cilēt janē IA-2 pozitiv kanō jo vetēm misk tē larté pěr tê zhvilluar diabet tip 1 (339) por edhe rrisk progresioni shumé tě shpejte. (340)
- Antitrupat antí ICA- subjektet tê cilett janẽ ICA pozitiv dhe veçanêrisht nëse titri i ICA éshte i lartê kanē me njê rrisk tê rritur pẻr teٌ shfaqur DMT1. (333, 307)
- Antitrupat anti-GAD jane parashikues té riskut dhe progresionit të shfaqjes
sẻ DMTl por ky rriks ěshtẻ mé i lartê nẻse janẻ tę pranishęm IAA đhe ICA. (307)

1.7 MARKUESIT METABOLIK

Edhe pse toleranca e glukozes mbetet normale deri ne fillimin e hiperglicemise, (341) përgigia akute e insulinès ndaj sekretagogëve tê ndryshěm (glukozês, argininěs, glukagonit dhe izoproterenolit) ulet gradualisht gjate periudhes preklinike. (342) Testi më i dobishëm the gjerësisht i përdorur éshtē pērgiigja akute e insulinès (ose "faza e paré") ndaj glukczës (FPIR) gjate testit të tolerancés së glukozes intravenoze (IVGTT); nē kētē test vlersohet rritja e insulinës serike mbi vlerat bazale gjatë 10 minutave të para pas infuzionit intravenoz tê glukozës; përgiigia korrespondon me masēn funksionale tê betà-qelizave (160) Në tē afërmit e brezit tee parë e tē sēmurëve me diabet tē tipit 1 , një FPIR nën percentilin e parë të només ëshë̉ një parashikuesi fortẽ i shfaqjes se diabetit tē tipit 1 (333). Subjektet me rrisk tê lartë për diabet mund tē monitorohen me IVGTT tê herēpashërshëm dhe testin e tolerancẽs me glukoze orale (OGTTs) dhe te vlerësohen faktorèt metabolik teٌ lidhur me progresin e diabetit Duke vlersuar vlerat e glicemive të dy FPIR dhe OGTT kanē sensibilitet të ngiashëm pēr parashikimine diabetit brenda giashtè muajve te diagnozess, 73% dhe 76% respektivisht dhe 97% kur pěrdoren te dy testet. (161) Sensitiviteti i glicemisẽ esell ishte një parashikues i dobēt i diabetit. Një
 matja e pẽrqëndrimit tê proinsuliněs serike esêll, pararendëse e insulinẻs. Nê personat nomal, proinsulina pẻrbèn rreth 15% të insulinès senke imunoreaktive, (162) proporcioni cili rritet kur funksioni beta qelizor pakessohet. PE̊rshembull, përqendrimet e proinsulinēs nē serum në tè afërmit ICA-pozitiv e pacientëve me DMT1 krahasuar me të afêrmit ICA negativ ishin 3.4 herě mé te larta. (343) Megjithate, nevojiten studime të mētejshme pēr tē përcaktuar nēse vlerat e larta tē proinsulinës serike ndihmojnẻ ne parashikimin e shfaqjes sẽ diabetit te̊ tipit 1 .

1.8 KARAKTERISTIKAT KLINIKE TË PREZANTIMIT TË DLABETIT MELITUS TIP 1 TË MOSHËS 0-14 VJEC NË SHQIPËRI

Diabeti melitus tipi 1 (DMT1) diagnostikuat pér heré tê parë né fêmijét dhe adoleshentèt prezantohet nẽ njē̃ nga tre janề format e mẽposhtmé, (344)

1. Prezantim klasik; polidipsi, poliuri, humbje peshe, hiperglicemi dhe ketonemi (ose ketonuri)
2. Ketoacidozë diabetike
3. Asimptomatik (zbulim i heshtur i rastësishęm).

Prezantimi klasik éshtē prezantimi mé i shpeshtē ndjekur nga prezantimi me KAD dhe shumè rralle prezantimi asimptomatik apo i heshtur. Manifestohet Winike tê DMT1
ndahen ne klasike dhe jo klasike. Manifestimet klasike si poliuria, polidipsia dhe humbja e peshēs janē simptomat mẽ fë shpeshta tē diabetit tip 1 pēr herë tē parē në femijêt dhe adoleshentět. Megjithatẽ, simptomat klasike nuk jane gijthmone simptomat prezantuese. Pothuajse të gjithẽ paciente厄t kanẽ një histori incidicze paraprirěse relativisht te̊ shkurtẽr me manüfestime jo specifike, nga vlera glicemie anormale deri ně zhivillimin e simptomave klasike. Shpesh fémijęt paraqiten nẻ shêrbimin ambulator me ankesa tẽ paqarta, jo specifike tę tilla si pafugi, këputje, lodhje, doběsi tẽ përgiithshme, pérgiumje, gjalléri tě ulur, đhimbje koke, konstipacion, dhimbje abdominale, irrituar me humor tē keq, nokturi, enurezis, ndërrim i shpeshtë i pelenave dhe/ose pelena jashtezzakonisht të mbushura, rash pelene rekurent në bebet the fémijest 1-2 vjeç, vaginitis monilial në vajzat adoleshente, infeksione rekurente tē lëkurës, mos shtimi nē pcshè nę një fèni tē rritur murē, pêrkeqêsimi ecunisë në shkollë dhe katarakt sidomos në fëmijēt e vegjēl. (345, 346) Hiperglicemia dëmton imunitetin dhe e predispozon fémujën për infeksione rekurente, vecanc̄nisht tê traktit urinar, të lēkurës dhe mukozave (kandidoza orale, në zonat inguinale the fleksurale) dhe tee traktit respirator: (346) Marrja e kujdesshme dhe e hollēsishme e anamnczës c̈shtë mjaft e rēndēsishme në niohjen e kétyre simptomave e cila do tê conte nẻ diagnozê tê hershme tê diabetit tip I. Kohēzgjatja mesatare e simptomave para prezantimit ështē 10 ditē. (347)

1.8.1 Prezantimi klasik për herë të parë (hiperglicemi pa acidozë).

Poliuria, polidipsia dhe humbja e peshěs janè simptomat klasike mè tể zakonshme i fëmijëve dhe adoleshentëve qê diagnostikohen me DMT1 për herë tê parẽ. (348) Simptomat lidhen me hiperglicemine dhe glukozurines. Simptomat e hiperglicemiseै jane te ngjashme pavarsisht shkakut primar. Simptomat e hiperglicemisé jane sekondare pêr shkak të diurezēs comntike dhe glukczurisē.
Poliuria - Poliuria ndodh kur pěrqendrimi i glukozęs nẻ serum rritet ndjeshém mbi 180 $\mathrm{mg} / \mathrm{dL}(10 \mathrm{mmol} / \mathrm{L})$. Ky ēshtè edhe pragu renal, i cili nēnkupton se pēr vlera të glicemisë́ mbi kētē prag, glukoza do tē ekskretohet në urinē. Glukozuria shkakton diurezè osmotike the hipovolemi. Poliuria në fëmijèt me DMT1 shfaqet si urinim i shpeshtë dhe volum i rritur, veçanērisht gjatē natēs (nokturi) dhe enurezis noctuma (iishfaqje e uinimit nē shtrat nē një femijë qē më parē e kontrollonte urinimin) ase diumale (gjatê ditës- në shkollē nevoja për tê dalē nga klasa pēr të përdorur tualetin. Kêto simptoma muk kuptohen lehtê nể fèmijęt e vegjęl pêr shkak tê marrjes natyrshêm nē sasi tề madhe të likideve dhe pērdorimit tē pampersave/pelenave. Në këtë grup moshè poliuria dyshohet kur prindęrit referojnè ndęrrim tę shpeshtẽ đhe jashtēzakonisht tê mbushura shumé tê pelenave dhe shfaqja e përsęntur e rashit në zonẽn e pampersit.
Polidipsia - Polidipsia (etje e shtuar apo déshirè e vazhđueshme e fèmijés pèr tê pirě lëngje) ështé kompesatore, sekondare dhe ndodh pert shkak të rritjes sę osmolalitetit plazmatik nga hiperglicemia dhe hipovolemia (poliuria, diureza osmotike, dehidrimi).

Pavarěsisht nga hipovolemia, pacientět mund tê mos kenẽ shenja klasike tê tharjes se membranave mukozale ose ulje të turgorit tè lēkurēs.
Oreksi dhe humbja e peshës - Humbja e pashpjegueshme e peshěs ështẽ rezultat i hipovolemise己 the katabolizmit te rritur. Humbja e peshěs èshte njẽ simptomé prezantimi nề rreth giysmèn e fèmijëve. Ulja e përdorimit tè glukozẻs nề muskujt skeletik nga deficiti i insulinës nxit glukoneogjenezen the rrit perdorimin the katabolizmin e yndyrnave (lipolizẽn) dhe proteinave (proteinolizẽn). Humbja e peshảs mund tê jetẽ e madhe, megiithẽse fillimisht oreksi i femijës ruhet ose esshtẽ i ritur, por me kalimin e kohès, oreksi ulet ndērsa fèmijēt shfaçin etje tē shprehur. Zhvillimi i ketozës Shkakton nauze, té vjella té cilat kontribojnê mé tej nẻ humbjen e peshës. Në foshnjat dhe fèmijēt e vegjël (< 3 vjeç), mos shtimi nē peshë dhe mos ritja mund të jenc̄ simptomat e para të hiperglicennisê ose si njē simptomē e izoluar c hiperglicemisë, e cilat shpesh kujtohet vetēm nê retrospektivè. (345)
Polifagia- Në fémijḕt polifagia shpesh mungon pēr shkak tē ketozës e cila shkakton anoreksi.
Crregullime të shikimit - Fëmijët me hiperglicemi të gjatē mund të paraqiten me katarakt. (349,350) Crregullimet e shikimit janê té zakonshme pèr shkak tę ndryshimeve në mjedisin osmotik të lentës dhe në njē masē mé tê vogēl nē dhomën aqueous the vitreous tę cilat shkaktojne ndryshime ně indeksin refraktiv. (351)

1.8.2 Ketoacidoza diabetike

Ketoacidoza diabetike (KAD) Ėshtẻ prezantim i dytë mé shpeshtẽ i fémijěve the adoleshentěve qẻ diagnostikohen me DMT1 pさ̊r herẽ tê parē, e cila karakterizohet nga triada: hiperglicemi, acidozě metabolike dhe ketozë.(173) KAD esshté njé urgiencẻ mjeksore metabolike jetêkërcënues đhe shkaku kryesor i sëmundshmêrisē dhe vdekshměrisě i DMT1 si pasoję e defiçitit absolut tę insuliněs. (352-354)
Shpeshtësia e KAD nē shumē vende të botës nuk është përshkruar/nuk dihet (82) por karakterizohet nga njê variacion gjeografik i shprehur, afërsisht 6-fish; varionnga 13\% nē Suedi në̈ 80% nē Eniratet e Bashkuara Arabe. (355) Njohja e këtij variacioni është një hap i rēndësishëmnë identifikimin e shkaqeve tē mundshme pēr tē hartuar ndērhyrje pēr reduktimin e shpeshtësinë së KAD the pēr tē diagncstikuar fëmijët me DMT1 pērpara shfaqjes së ketoacidozës. Fëmijêt qū prezantohen me KAD nê kohēn c diagnozés sê DMT1 shfaqin shpeshtési remisioni parcial mê tê ulur, ($\mathbf{3 5 6}, \mathbf{3 5 7}$) masế më tē vegēl të́ qelizave beta ende të pa dēmtuara (358, 359) kontroll mē të keq të metabolizmit dhe glicemisé (360) me episode te̊ shpeshta KAD, (361) dhe misk te mitur pěr manifestime tě mẽvonshme psikosociale (vetě-vlersim tê ulur, kompetencê sociale tê ulur, përkeqẽsim tể marrëdhènieve me prinđēnt e tyre). (362) KAD klasifikohet nĕ bazẻ te̊ kritereve biokimike dhe klinike.
Kriteret biokinike për diagnozën e KAD. Nez vitin 2014, Shoqata Ndsrkombëtare e

Diabetit për Femijét dhe Adoleshentelt (ISPAD) nè niję deklaratẻ konsensusi pêrcaktoi kriteret biokimike tē diagnozēs sē KAD si mëposhtē: $(\mathbf{3 6 3}, \mathbf{3 6 4})$

1. Hiperglicemi-glukoza në gjak $>200 \mathrm{mg} / \mathrm{dL}(11 \mathrm{mmol} / \mathrm{L})$ dhe
2. Acidozë metabolike $\cdot \mathrm{pH}$ venoz $<7,3$ ase bikarbonatet plazmatike <15 $\mathrm{mEq} / \mathrm{L}(15 \mathrm{mmol} / \mathrm{L}$) dhe
3. Ketozë - pěrcaktohet nga prania e ketoneve nẽ gjak ($\mathrm{BOHB} \geq 3 \mathrm{mmol} / \mathrm{L}$ ose $31 \mathrm{mg} / \mathrm{dL}$) ose nē urinè (ketonuri $>+2$). BOHB ofron njè vlersim mé tê saktë teٌ ketozes se metodat e vjetra qê pêrdorin nitroprusid, te̊ cilat matin vetëm acetoacetate (trupa ketonik tē pranishēm nê përqendrim më tē ulët) nĕ njẻ̉ něnvlerèsim tê gravitetit tẽ ketonemise.

* Nēse me çdo mënyrë vērtetohet se pacienti ka ketozë të rëndè (né mungesè të hiperlaktatenisë) dhe nē pamundēsi pēr të matur BOHB nē giak, llogaritja sekuenciale e deficitit té anionit ështē njè mjet i dobishèm pêr tê gjumuar pērmirc̄simin progresiv tē ketoncrnisë,
Graviteti i KAD bazohet në të dhënat klinike dhe laboratorike. Mbēshtetur në dcklaratēn c ISPAD viti 2014, graviteti i DKA sipas shkallës së acidozës (pH venoz dhe përqêndrimit tę bikarbonateve serike). Shkalla e acidozęs nĕ mènyrè direkte reflektojnē gravitetin e acidozēs dhe përdoren gierēsisht nē praktikēn klinike për të Klasifikuar KAD ně prezantim nē formèn e lehtē, e moderuar dhe e rèndè (tabela 1.8), Kategorizimi gravitetit tẽ DKA nẽ prezantim ndihmon pêr tē ps̊roaktuar nivelin e duhur te kujdesit (p , sh., nevojèn pèr kujdes intensiv (ICU)),

Tabola L.S. Vlersini i gravitotit tiz ketoceidocös diatoctike mï famijizt

	Elehts	E moderuar	E rêndê
Karakteristikat pěrcaktuese			
pH venoz	7.2-7.3	7.1-7.2	<7.1
Bikarbonatet nẽ serum (mEq/L)	10-15	5-10	<5

Burimi: 365

Ketoza. Niveli i hendekut tě anion (anion-gap) ështę njẽ tjetęr mënyrè për tè vlersuar gravitetin e ketozess metabolike dhe mund tê jete̊ njè vlerêsim i dobishëm i acidozês. Një hendek shumẽ i madh i anionit mund tě reflektojé ulje tê perfivionit renal, i cili kufizon ekskretimin e ketcacidit. Hendeku i anionit (anion gap) llogaritet nga ekuacionit anion gap - Sodium - (klor + bikarbonat); anion gap normal ěshtẽ 12 ± 2. Megïthatē, prezenca e njē defiçiti anioni të madh nê mungesē të ketosis së konsiderueshme ($\mathrm{BOHB}<3 \mathrm{mmol}$) sugjeron mè shumé pe̊r acidoze̊ laktike the
mundésinè e gjëndjes hiperglicemike hiperosmolare (HF) ose sepsis. (365) Matja e beta-hidroksibutiratit plazmatik tani ēshtē gierësisht e disponueshme dhe ēshtë një metodê e drejtpérdrejtē pér monitorimin e shkallés sẻ ketoacidozẻs. Gjatě trajtimit, anion gap ka tendencẻ teٌ normalizohet përpara normalizimit te acidozẻs. Prandaj, defiçiti i anionit êshtè njees matje mễ e mire e trajtimit efektiv sesa pęrqendrimi plazmatik i bikarbonatit.
Frekuenca respiratore mund tè ndihmojè nミ̉ vlersimin egravitetit tè KAD pasi shkalla e kompesimit respirator «̉shtē e lidhur nẽ mẽnyrě tẽ drejt-pęrdrejtě me gravitetin e acidozës.
Gjëndja neurologjike-kompromentimi i rēndë neurologjik né prezantim esshtë një indikator prognostik i keq sepse pacientēt janē nē rrisk pēr tè zhvilluar edemē cerebrale gjatē terapisë prandaj është e rēndēsishme të njihen dhe trajtohen shënjat c hershme të komprementimit neurologjik (tabela 9). (387) Simptomat e edemës cerebrale zakonisht shfaquen disa orē pas fillimit tē trajtimit të ketoacidozēs. (387)
Gjëndja e volumit. Humbja e peshës sē matur ofron vlerësimin mē të mirë të humbjes sę likideve apo shkallës sē dehidrimit nēse njihet një peshē e matur saktē kohēt e fundit. Pęmdryshe, menaxhimi fillestar i likideve do tẻ bazohet nể supozimin e deficitit sipas gravitetit tè ketoacidozés: 5-7\% për KAD e moderuar dhe $10-15 \%$ për KAD e rëndé, (365) Nẽ pẻrgiithěsi fêmijêt me KAD prezantohen me defiçit tê likideve 5-10\% (353, 366, 367) Fëmijęt me DKA krahastuar me fêmijêt me tę nję̧těn shkallè deplecioni nga shkaqe akute tę dehidrimit si tę vjellat ose diarrea akute mund tê manifestojne̊ mહ̉ lehtẻ disa nga shenjat klasike te deplecionit tę volumit ekstraqelizor (tè tilla si mukoza teٌ thata, ulje e elasticitetit dhe turgont tê lekuress, ulje te diurezẽs dhe hipotension). (368) Ky dallim i rêndësishêm éshtē pasqyrim i humbjes kronike teٌ ujit edhe nga hiperventilimi né prani tē natriumit tē tepērt. Uji shpërndahet lirshëm midis mjectisit intraqelizor dhe ekstraqelizor. Humbja kronike e ujit shkakton hipovolemi ekstraqelizore në krahasim me humbjen e natriumit dhe uiit dhe ritje të dukshme të osmolalitetit plazmatik. (368) Përveç kësaj, diureza osmotike e shkaktuar nga hiperglicemia e ruan perfuzionin renal, kjo ēshtë arsyeja pse ruhet diureza. Nga ana tjetēr, pacientët me DKA nuk shfaqin shenja të deplecionit tē volumit intravaskular, siç jane takikardia, ndryshimet posturale të pulsit dhe presionit të gjakut (hipotension) dhe perfuzion periferik të ulur sepse hiperglicenia ndihmon në mbajtjen e volumit intravaskular, Kêto shenja shpesh zgjasin pér 24 derinẽ̈ 48 orë pas fillimit tè rivendosjes sé duhur të volumit, pēr shkak tē sekretimit në ritjje të vazhdueshme tē epinefrinës dhe prodhimit te kortizolit,
Vlerësimet klinike tee shkallés sè dehidrimit janê te pasakta dhe jo te dobishme. Nê pèrgiithësi, sa mè i mitur té jetę përqendrimi plazmatik i kreatiminés, azotemise dhe përqendrimi i glukczès, aq mé e rêndë eshteß giendja e dehidrimit Azotemia dhe hematokriti i ritur tregon pér deplecion tě modenuar volumit, ndèrsa kreatinina e rritur,
ulja e diurezès ose hipotensioni postural sugjeron deplecion mê tê rèndê tê volumit ose hipotensioni postural sugjeron zvogèlim mê të rêndè tê vällimit.
Kohëzglatja e simptomave - Koha e gjatẻ e simptomave, prania e manifestimeve neurologjike ne̊ prezantim, kohäzgjatja e depresionit t厄̃ nivelit të ndërgjegjes ose kompromentimi i qarkullimit ndihmojne pér tê vlersuar gravitetin e ketoacidozẽs. Sa më e madhe teٌ jetẻ kohëzgjatja e simptomave, depresioni i nivelit tẽ ndërgjegjes ose
 pèr komplikacione potenciale siç eshtę edema cerebrale.(353, 366)
Kriteret klinike për điagnozën e KAD. Eshtē e paqartē pse disa fèmijë prezantohen me KAD ndérsa disa jo dhe nëse zhvillimi i saj esshtë pasojé e diagnozés dhe trajtimit teٌ vonuar apo reflekton njē formē tē veçantē agresive tē diabetit.(369) Ndonèse shumica e fémijēve me diabet tip 1 prezantohen me shenjat klasike, prezantimi me KAD i dabetit diagnostikuar për herë të parē ēshtë më i shpeshtē nē popullata me incidencë DMT1 tē ulët (shoqërim invers), nē fémijēt e vegièl < 5 vjeç (veçanënisht në foshnjat, nē fémijērinë e hershme dhe moshat parashkollore), grupet etrike minorene, nē fëmijēt pa histori familjare apo që nuk kanë të afëm tc̄ brezit tê parë me diabet tip 1, nē fémijçt e familjeve me gjèndje socio-ekonomike té ulur, ne familjet me mungese aksesi tę kujdesit shëndetësor apo sigurim shēndetēsor, BMI c vogēl, infeksione paraprirëse, vonesa ně diagnozé dhe trajtim, nè vendet larg nga ekuadori the né vendet me GDP mé
 me KAD. (371) Manifestimet nè fèmijĕt qę prezantohen pěr herè tê parè me DKA janẻ tê ngjashme me formẽn klasike teٌ prezantimit por zakonisht mê tê rènda. Fêmijèt krahas simptomave Klasike paraqiten me dehidrim, nauze, te vjella, frymémarrje me eré si e frutave te̊ kalbura (aceton), frymẻmarje te shpejte dhe tê thelle (frymëmarrje Kussmaul) dhe manifestime neurologjike të tilla si pergjumje, letargii dhe alterim të ndërgiegjes. Manifestimet klinike te̊ DKA janê te̊ lidhura me shkallẽn e hiperoomolalitetit, moshēn, deplecionit të vëllimit, gravitetit tē ketoacidozës. (372) Shenjat më të hershme të KAD janë tē lidhura me hipergiceminé (hiperosmolalitetin).

- Fëmifer e vegjel zakonisht prezantohen me ulje té altivitetit, ulje të gjallērisë, më pak energjik, grindje, irnitim, alterim të humorit, humbje peshe, shënja dahidrimi, rash në zonën e pampersit ng a kandidoza. Poliuria dhe polidipsia mund te mos vihen re apo tē jenë të dukshme sepse foshnjat nuk janë tē trajnuar në tualet dhe polidipsia nuk eshtê e dukshme sepse foshnjat nuk shprehin etje, si rijedhoje diagnoza vonohet. Hiperglicemia kronike nè vajzat dhe nẻ foshnjat dhe fèmijęt $1-3$ vjeg nę tę dy ginitẻ zakomisht çojnè né candidiasis perineale.
- Fëmijēt e rrithr dhe adoleshentēt nê mënyrê tipike prezantohen me poliuri, polidipsi, dehidrim, takikardi, dobēsi të përgiithshme dhe lodhje, humbje peshe, nokturi me ose pa emurezis noktuma, enurezis gjate dites, moniliasis vaginale ose kutane. Hipovolemia mund të jetê shumë e rēndë nëse nuk zëvēndēsohen humbjet urinare.

Manifestimet jo klasike tê tjera qè mund tê shfaqin fêmijèt me KAD janè si mè poohtẻ (366);

- Polifagi dhe ulje oreksi. Nẻ fillim té sęmundjes fèmijęt manifestojnẻ oreks tẻ shtuar (polifagi) por me theksimine deficitit te inuliness dhe zhvillimine ketoacidozês, oreksi ulet,
- Shenja gastrointestinale. Shumé pacienté mund prezantohen me nauze, të vjella, konstipacion, dhimbje barku tē cilat imitojnë apendicitin, gastroenteritin.
- Shenja kardio-respiratore. Femijēt me KAD mund tè prezantohen me takikardi, hiperpne, takipne (hiperventilim dhe frymarrje Kussmaul), të cilat janë kompesime respiratore ndaj acidozës metabolike. Hiperpnea eshte rezultat i ritjesê sè volumit nee minutẽ (frekuence x volumin tidal) dhe mund tè mitet edhe vetèm nga volumi tidal pa ritje të frekuencès respiratore. Si mjedhojë gjatè vlersimit tê fèmijeve duhet tex observohen me kujdes lëvizjet e toraksit dhe frekuenca respiratore. Nę fèmijět e vegiel hiperpnea mund të manifestohet vetëm si takipne. Gjithashtu disa pacientēt mund tê manifestojnē frymarrje si erê molle te kalbur sekondare nga eleminmi i acetonit.
- Shenja neurologjike. Manifestimet neurologjike variojné nga pérgjumje, letargï, alterim tē nivelit tè ndèrgjegjes deri nē koma. Manifestimet lidhen me gravitetin e hiperosmolalitetit dhe/ose me shkallën e acidozēs. (372) Vlersimi neurologik i femijēve me ketoacidozë bëhet duke vlerësuar pranine e kritereve minore the madhore sic tregohen nē tabelën e mēposhtme (tabela 1.9).

Kriteret Minore (gietje dyshuese në mënyrët ter moderuar)

Dhimbje koke
Tē vjella
Irritim, letargii, ose zgjim me vēshtirësi nga gjumi (n.q.sc nuk ka ndonjë arsye tjetër tê deprivimit të giumit)

Hipertension (Presion Arterial diastolik $>90 \mathrm{mmHg}$)
Kritere Madhore (gietje shumë dyshuese)
Gjēndje mendore anomale ose e përkeqësuar pas fillimit tē terapisë, sjellje e axhituar, fluktiacion i ndërgjegjes

Incontinence e papérshtatshme pěr moshěn
Ndryshime në përgiigjen pupilare ose paralize e nervave kranial të tjerē

Bradikardi i papērshtatshme (ulje > 20 rrahje/minut qē nuk i atribohet mitjes sê volumit intravaskular apo giendjes sę gjumit)

Rritje e menjechershme natremis*
Ulje e saturimit te oksigjenit
Aktivitet respirator neurogjenik anomnal (rënkime, takipne, respiracion CheyneStokes, apnoe)

Burim:372

KAD dhe komplikacionet e tij jané shkaqet mè tè zakonshme teٌ shtrimeve né spital, i sẻmundshměrisé dhe vdekshmérisẻ nẻ femijêt me DMT1 dhe ndikojnê nê ecurinę Klinike afatgjate tê tij. $(\mathbf{3 5 3}, \mathbf{3 5 4})$ Sa mè e rêndè dhe sa mẽ vogèl tè jetë mosha e shfaqjes sẻ KAD aq mē shumē reduktohet faza e remisionit ($\mathbf{3 5 4 , 3 5 6}$) Ndryshe nga popullata adulte, KAD shfaqet shumè shpejt nê fèmijèt duke mbartur njè rrisk tê rēndësishèm tẽ komplikacineve jetē-kërcëruese tē tilla si edema cerebrale, e cila ēshtẽ edhe shkaku kryesor i vdekjeve tê fèmijēve lidhur me diabetin (373) sidomos gjatè orëve tę para teٌ trajtimit. $(\mathbf{3 7 4 , 3 7 5})$ Vdekshmēria nga KAD dhe komplikacionet e saj ështē rreth 0.15 0.31%. $\mathbf{(1 7 2 , 3 7 4 , 3 7 6)}$ Komplikacionu më i madh i ketoacidozës êshtē edema cerebrale, e cila ndodh në 0.5-1\% tē rasteve tē KAD që ështē edhe shkaku kryesor i vdekshmërisë. Mjekët duhet të jenë vigilent pèr njohjen dhe trajtimin e shēnjave tē hershme të neurologjike té edemés cerebrale (tabela 9). (365) Gjèndja neurologjike e rènde nĕ prezantim èshtē një tregues prognostik i keq, pjesënisht sepse pacientë të tillē janë̈ në misk tẹ rritur për të zhvilluar edemẽ cerebrale gjaté terapisě. Për tẽ vlersuar shkallën e edemës cerebrale përdorim pikëzimin e komës sipas Glasgow pêr fèmijët (PGCS). Një pikżzim ≤ 7 (6 deri né 7) karakterizohet nga përgigje anormale ose mungese té qesllimshme ndaj dhimbjes (tabela 1.10).

Tabla J.Ia Shialla Glasgons e Komès Pediatrithe (279,280)

Shenja	Shkalla Glasgow e Komës Pediatrike ${ }^{\text {(2) }}$	Rezultati
Hapja e syrit	Spontane	4
	Ndaj zhurmës	3
	Ndaj dhimbjes	2
	Mungesē pērgiigje	1
Përgigja verbale	Vokalizimi, buzëqeshja ose orientimi i duhur ndaj tingullit në përputhje me moshēn, ndërvepron	5

	(murmurin, belbēzon), ndjek objektet	
	Qan, irritim	4
	Qan si reagim ndaj đhimbjes	3
	Rénkon si reagim ndaj dhimbjes	2
	Nuk reagon, mungesê pèrgigje	1
Përgiliga motore	Lëvizje spontane (bindet ndaj uthërave verbalë)	6
	Largohet ndaj prekjes (lokalizon dhimbjen)	5
	Largohet ndaj dhimbjes	4
	Fleksion anormal ndaj dhimbjes (posturẽ dekortikate)	3
	Ekstension anormal ndaj dhimbjes (posture decerebrate)	2
	Asnjē, mungese pèrgijgje	1
	Pikězimi mẻ i mire esshte (maksimal)	15

Burim, 377, 378

Shkalla Glasgow e Komēs Pediatrike mund tè gjenerojë rezultate që vaniojnë nga 3 në 15, ku 3 ështê rezultati mẽ i keq dhe 15 éshtẽ rezultati mẽ i mire.. Kjo shkallê èshtê validuar për fèmijett 2 vjeç ose mè tę vegiél.
 prezantion duke pěrdorur shkallèn Glasgow te komës. Kjo duhet tě pasohet nga nię vlerěsim mề i detajuar për shenjat mẽ tẽ lehta tě edemê cerebrale, si dhimbje koke (sidomos fillimi i papritur), alterim, ngedalęsim i ndjeshmẽrisẽ ose përgigjes pupilare, inkontinencē e papërshtatshme për moshën, tē vjella, shqetësim, nervozizēm, pèrgjumja. Bradikardia, rritja e presionit te gjakut, dhe postura opistotonike jane shenja tê vona nē evolumit tē edemès cerebrale.
Duhet të bëhet vlerēsim neurologiik fèmijëve me faktorè risk pēr edemë cerebrale; fëmijët < 5 vjeç, fëmijēt qê prezantohen me DKA dhe acidozē e rëndé, fëmijēt qē kanë 1 ose më shumē knitere minore që nuk shpjegohen për arsye të tjera (dhimbjet ekokēs, tê vjellat qê shfaqen apo rishfaqen gjatê trajtimit tě KAD), fèmijêt me KAD me ndonjé nga kriteret madhore. Verësimi neurologjik duhet të përsëritet çdo orē gjatē trajtimit ose derisa pacienti ěshtę shěruar klinikisht nga ketoacidoza dhe ekzaminimi i statusit mendor ēshtē nommal.
Kompromentimi i rëndę neurologjik nẻ prezantimin shoqërohet me prognozể tę varfèr,
kryesisht sepse pacientët mund tẽ kenê edemé cerebrale ose janè nè rezik nè rritje pér shfaqjen e edemës cerebrale gjatë terapisé. Fēmijët me KAD dhe edemë cerebrale (Glasgow coma ≤ 7) ose vdesin ose mbijetojnê nê njè gjendje vegietative tê vazhdueshme. (378) Si rezultat, kêta fëmijé duhet të rehidrohen me shumè kujdes dhe tê monitorohen nga afèr giate 24 orěve fillestare tê terapisé. Nêse elkiston dyshimi i edemës cerebrale, Klinicisti nuk duhet tę hezitojě te përdorę mannitol ose $\mathrm{NaCl} 3 \%$.

1.8.3 Prezantimi asimptomatik

Disa fèmijë diagnostikohen me DMT1 para fillimit tè simptomave klinike. Ky prezantim eshté mê pak i zakonshëm dhe zakonisht ndodh tek fèmijet qee kane histori familjare apo njē anëtar të afêrt të farniljes me DMT1. Diagnoza shpesh bëhet nga një anëtar i familjes, klinicist me shkallē tē larte dyshimi ose në studimet kẽrkimore të matjes sê autotitrupave anti ishullor për vlerësimin e rriskut tē shfaqjes së sëmundjes. Diagnoza vendoset bazuar nē vlerat e glicemisé.(379)

1.9. DIAGNOZA E DIBETIT MELLITUS TIP 1 NE FËMLËT DHE ADOLESHENTËT: KRITERET DIAGNOSTIKE.

Mê parẽ fillimi i diabetit tip 1 konsiderohej "data e injektimit pêr herề tê paré e insuliněs'’ pęr shkak se fillimi i simptomave dhe diagnostikimi ndodhin nẻ kohê teß ndryshme, (380) ndërsa udhëzimet e sotme përcaktojnë fillimin e diabetit duke u bazuar ně rezultatet jonormale tê ekzaminimeve (tabela 1.11). DMT1 eshtę njê nga tipet e diabetit mellitus, diagnoza dhe diferencimi i tẻ cilit bazohet nē kriteret e pērcaktuara nga Organizata Botërore e Shëndetësisë, 2006.(381)
Diagnoza e diabetit në fëmijët dhe adoleshentēt bazohet nē shenjat klinike dhe nē 1 nga 4 kriteret e mëposhtme tē metabolizanit anormal të glukozēs bazuar në udhëzimet e Shoqatës Amerikane të Diabetit (ADA) tē përdorura në adultēt me diabet. (382)

Tabela 1.11. Kiteret pery diagnozën e diabetit sipar ADAs.

1. Glicemi esëll $\geq 126 \mathrm{mg} / \mathrm{dl}(7 \mathrm{mmol} / \mathrm{L})$, nê mé shuëm se një rast. Esell pẻrcaktohet si mos marrje e kalorive pēr tē paktēn 8 orë.
Ose
2. Glicemi venoze rastësore $\geq 200 \mathrm{mg} / \mathrm{dL}(1.11 \mathrm{mmol} / \mathrm{L})$ né një pacient me simptoma klasike të hiperglicemisē., Rastësor përcaktohet në çdo kohē tē ditës pavarēsisht kohës se vaftit te fundit.
Ose
3. Glicemi $\geq 200 \mathrm{mg} / \mathbf{d l}(11.1 \mathrm{mmol} / \mathrm{L})$ e matur 2 orë pas ngarkese glukoze 1.75 $\mathrm{gr} / \mathrm{kg}$ (maksimumi 75 gr) nē OGGT (testi i tolerancēs sé glukozēs). Shumica e fêmijëve dhe adoleshentẽve janë asimptomatik dhe kanë perrqênderime
plazmatike $\mathrm{mbi} \geq 200 \mathrm{mg} / \mathrm{dl}(11.1 \mathrm{mmoll}) ;$ kështu OGTT eshtë malle e nevojshme per diagnozën e DMT1. Testi duhet të bëhet siç përshkruhet nga OBSH duke pěrdonur 75 gr glukozẻ tẻ anhidruar tê tretur nẻ̉ uję pêr ata që peshojnë $>43 \mathrm{~kg}$ ose $1.75 \mathrm{gr} / \mathrm{kg}$ pěr ata që peshojñ $<43 \mathrm{~kg}$.
Ose
4. Hemoglobina e glukozuar (HbA1c) $\geq 6.5 \%$ e certifikuar the standartizuar nga programi kombëtar i sandartizimittę glukohemoglobiněs (NGSP) pēr ekzaminimin e DCCT.

HbA1c konsiderohet si test diagnostik me siguri the saktěsi tę lartě për diabetin. Testi është i standardizuar sipas kritereve të përafruar me vlerat referuese ndërkombëtare the nuk ka asnjë situatē tē pranishme qē përjashton saktësinë e tij. (383) HbAlc mat përqindjen e hemoglobinës A tē lidhur me glukozēn nëpërmjet glikacionit jo-enzimatik dhe tregon nivelet mesatare të glicenisë gjatë $10-12$ javēve të fundit. HbAlc $\geq 6,5 \%$ pranohet si kriter pēr diagnozēn e diabetit në adultët (382) por njē vlerë $\leqslant 6.5 \%$ nuk e pērjashtojnë diabetin. (384) Nē disa fémijē kur diabeti evulon me shpejtësi, HbAlc mund té jeté normal pavaressisht pranisésé simptomave klasike tę diabetit. Nê kêto raste preferohet tē përdoret niveli i glicemisë plazmatike për diagnozēn nē vênd të HbAlc .Individět me hemoglobina anormale cose shkatërrim tę shpejtë teै eritrociteve mund tê kenè vlerẻ tę HbAlc që nuk pasqyron saktẽsisht vlerat mesatare teٌ glicemise. Përdorimini i teknikave te kromatografise me afinitet-boronati ku variantet dhe derivatet e hemcglobiněs ndërhyjne̋ shumẻ pak e ka përmirësuar vlerësimin e saktë teٌ HbAlc nẻ kēta individ. (385) DMT1 tek fémijèt zakonisht prezantohet me simptoma karakteristike tè tilla si poliuri, polidipsi, nokturi, eneuresis, humbja në peshe bashkëshoqēruar nga glukozuria dhe ketonuria. Glukozuria ēshtē sugjeruese e diabetit, por jo diagnostikuese. Për shembull, pacientest me glucosuria renale ose sindromi Fanconi shfaqin glukozuri por kanë pêrqendrim normal të glukozēs nē plazmē. Nëse simptomat janë të pranishme, një mjet depistimi i thjeshté dhe sensitiv është ekzaminimi i urinës me 'dipstik' për glukozuri dhe ketonuri ose matja e glukozz̈s dhe ketoneve me Glucometer. Nëse niveli i glukozēs në gjak ēshtè i lartë, atëherē referimi i shpejt në një qendër me përvojè nē menaxhimine fèmijëve me diabet ështē thelbēsore. Pritja e njē dite tjetër nē mënyrë specifike për të konfimuar hupergliceminë ēshtë i panevojshěm dhe né qofte se ketonet janě tę pranishme né gjak ose uriné, trajtimi esshtẻ urgjent. Mos trajtimi mund tē jetē i rrezikshëm sepse ketoacidoza zhvillohet me shpejtési. Diagnoza zakonisht konfirmohet nga matja e njễ ritje të dukshme e nivelit tẻ glukozês né gjak; kjo duhet tẻ bazohet né vlersimin e glicemisê nẽ laborator dhe jo glicemia e matur nê kapilar me glikotest. Nê mennyre te ngjashme, prania e autoantitkorpeve-ishullore specitike mbështesin diagnoze̊n, por nulk mjaftojne.
OGTT duhet té behet pas 2-3 ditësh pas njee diete me shume karbohidrate. Né praktikë
megjithèse glicemia qé matet 2 orẽ pas njề mẽngjesi me shume karbohidrate èshtê mé shumë praktike sesa informatuese. OGTT nuk duhet tê kryhet në qoftè se diabeti mund tę diagnostikohet duke pèrdorur kriteret esêll, tê rastit ose post-prandiale tê cilat rezultojnß̉ në hiperglicemi tẻ shprehur. OGGT përdoret më shumě pér qellime kérkimore dhe nuk rekomandohet pér pérdorim klinik rutin. Indikohet rrallê pèr të vendosur diagnozěn e diabetit tip 1 ně fémijĕt dhe adoleshentẻt, por mund tè jetẽ i dobishêm nå̃ diagnostikimin e formave tę tjera tê tilla si diabeti tip 2 , diabeti monogenik ose diabeti i lidhur me filrozen kistike (CFRD).Nëse dyshimi mbetet, duhet te ndërmerret rivlerēsime periodike deri sa té vendoset diagnoza. Diagnoza e KAD bazohet nẻ kniteret biokimike tẻ përcaktuara nga ISPAD (Shoqata Ndërkombẻtare e Diabetit pēr Fëmijèt dhe Adoleshentēt), 2014. (364)
$N e ̄$ situata të caktuara diagncza e diabctit duhct tē konsiderohet në rmungesë të simptomave klasike siç jané fèmijēt që prezantohen me njē sëmundje febrile akute në tê cilēt matja e glicenuisé është pjesç e vlersimit tē panelit biokimik rezulton e rritur. Si rezultat i kētyre manifestimeve DMT1 mund të keq interpretohet si një sëmundje me të vjella akute scpse simptomat klasike të dehidrimit (zvogëlimi i diurczēs) maskohen nga poliuria e cila lidhet glukozurinẻ. (386)
Situatat kur diagnoza e diabetit mund tê mos jetc̄ e qaartê:

- Nê mungesé tê simptomave hiperglicemia e zbuluar rastêsisht ose nè fèmijèt qê marrin pjesé ně studime precipituese.
- Prania e simptoma tê lehta/atipike tè diabetit,
- Hipergliceni e zbuluar nẻ gièndje infektive akute, traumatike, crregullime te qarkullimit ose strese tē tjera mund tē jetë kalimtare dhe nuk duhet në vetvete tẽ konsiderohet si diagnostike e diabetit
Ne këto situata diagnoza e diabetit nuk duhet të bazohet në njē matje të vetme tē pérqëndrùmit tè glukozës plazmatike. Diagnoza mund tē kērkojë observim tē vazhđueshěm duke matur gliceminẽ̃ esêll dhe/ose 2 orẻ pas ngarkesěs dhe/ose testi tolerance glukozz̈s orale (OGTT) dhe HbAlc.
Toleranca e dëmtuar e glukozës (IGT) dhe dëmtimi i glicemisë esëll (IFG). Kriteret pēr diagnozën e diabetit janë rishikuar kohët e fundit dhe janē shtuar edhe kategonitè e IGT (glicemi pas 2 orěsh $140-200 \mathrm{mg} / \mathrm{dl}$) dhe IFG (glicemises eselll $=100-125 \mathrm{mg} / \mathrm{dl}$). IGT dhe IFG janẻ stade preklinike ně historinë natyrale tę çrregullimit tê metabolizmit tê karbohidrateve midis homeostazěs normale tê glukozès dhe diabetit. (387) IFG dhe IGT nuk jané entitete klinike, ato pėrfaqésojné anomali te̊ ndryshme të rregullimit tě glukozēs apo faza të ndryshme në progresionit të disglicentisë. IFG është çrregullim i metabolizmit tê karbohidrateve ně gjëndje bazale ndërsa IGT ẻshtę njé matje dinamike e intolerancës sē karbohidrateve pas ngarkesēs sē standardizuar me glukozē. Pacientēt me IFG dhe/ose IGT referohen si 'Prediabetik' dhe kensiderohen si rrisk relativisht i
lartê për shfaqjen e diabetit dhe sëmundjeve kardiovaskulare. (10) IFG dhe IGT mund tē shoqërohen me sindroma metabolike, karakteristikat e të cilit përfshijnē̄ obezitetin (vecanerrisht abdominal ose obeziteti visceral, i organeve te brendshme), dislipidemi (hipertrigliceridemi dhe / ase ulje e lipoproteinave me densitet te larte (HDL)) dhe hipertension. IFG dhe IGT mund tè vêrehen si faza tê ndè̛rmjetme nề ndonjè nga sěmundjet e listuara ne Tabelen 2 (klasifikimi 1 diabetit). Individët teٌ cilest i plotësojně kriteret pěr IGT ose IFG mund të jenè normoglicemik nể jetěn e tyre tê pērditshme, siç tregohet nga vlerat normal ose afer-normal tê HbAlc che hiperglicemi vetém gjatè njě OGTT.
Kategorite e glukozẽs plazmatike esell (FPG) përcaktohen si mẽ poshtè:
- FPG $<5.6 \mathrm{mmol} / \mathrm{L}(100 \mathrm{mg} / \mathrm{dL})=$ glukczē esêll normal.
- FPG $5.6-6.9 \mathrm{mmol} / \mathrm{L}(100-125 \mathrm{mg} / \mathrm{dL})=$ IFG
- $\mathrm{FPG} \geq 7.0 \mathrm{mmol} / \mathrm{L}(126 \mathrm{mg} / \mathrm{dL})=$ diagnozě e pèrkohshme e diabetit (diagnoza duhet tê konfirmohet, siç përshkruhet ne Tabelèn 1).
Kategorite koresponduese kur përdoret OGTT: Dy orë pas ngarkesess me glukozë jané si më poshte:
- $\quad 7.8 \mathrm{mmol} / \mathrm{L}(140 \mathrm{mg} / \mathrm{dL})=$ tolerancén normale e glakozés.
- $7.8-<11.1 \mathrm{mmol} / \mathrm{L}(140-200 \mathrm{mg} / \mathrm{dL})=$ IGT .
- $\geq 11.1 \mathrm{mmol} / \mathrm{L}(200 \mathrm{mg} / \mathrm{dL})=$ diagnozë të pērkohshêm të diabetit (Diagnoza duhet tě konfirmohet, siç përshknuhet më sipër).

1.10 DIAGNOZA DIFERENCIALE

Diagnoza diferenciale e diabetit përfshin nịe sêrê sëmundjesh karakterizuar nga hiperglicemia. Nga pikępamja fiziologiike insulina êshtę hormoni i vetęm hipoglicemik. Hiperglicemia ęshtê pasojê (1) e dẻmtimit tę sekretimit tè insulinẽss nga qelizat beta teٌ pankreasit (DMT1) ose (2) rezistenca e insulinés ně hepar, muskuj, qelizat dhjamore të cilat e kalojnë kapacitetin e pankreasit për ta kompesuar (DMT2) ose (3) tě dyja. Dy format mê tê zakonshme tê diabetit nê fémijět dhe adole shentęt janê DMT1 dhe DMT2, diferrencimi i tè cilave ndonjeherè èshtè jo i thjeshtē pēr shkak të ndryshimeve dhe ndikimeve të faktorëve mjedisor, (388) DMT2 ēshtē heterogien për sa i perrket karakteristikave gjenetike, metabolike dhe klinike the karakterizohet nga hiperglicemia, deficititi dhe rezistenca ndaj insulinēs. Përveç kēsaj, pacientēt me diabet tè tipit 1 mund të kenë elemente patofiziologilke të diabetit tē tipit 2. Rritja e shepeshtësisë së diabetit nē emigrantët nē sugjeron ndikimin e faktorēve mjedisor, sidomos at ushaimor si ně DMT1 ashtu edhe DMT2. (388). Rritja e shpeshtessise seै DMT2 tek fëmijët dhe adoleshentët e bēnë gjithnjē e më e rēndēsishme diferencimin midis tyre për shkak se menaxhimi dhe edukimi esshtẽ i ndryshěm.
Karakteristikat klinike, laboratorike dhe serologijike nuk mund tē diferencojē nē mënyтë
te prere midis DTMI dhe DTM2. Karakteristikat klinike jo gjithmone jane aq té siguta sa ̧̧'do të dēshironim pēr të vendoour diagnozën. Ndodh qē duke u mbēshtetur në karakteristikat klinike fillimisht pacientest te̊ keqdiagnostikohen si DMT1 sepse prezantohen me ketozé ose ketoacidozẻ dhe me vone te diagnostikohen si DMT2 dhe anasjellas fillimisht keqdiagnostikohen si DMT2 për shkak té prezantimit me mbipeshé, mungesê tę autoantitrupave anti ishollor dhe ecuri klinike mẽ tẽ qěndrueshme mé pas u diagnostikuan si DMT1. (389) Karakteristikat klinike ndihmëse ne diferencimin e DMT1 nga DMT2 nẽ fèmijět dhe adoleshentęt janẽ pãrgjithẽsuar tashmé si mẽ poshtě (tabela 12):

- Mënyra e fillimit- diabet melitus me fillim akut, pacient jo obez, jo affikanamerikan ka më shumē tē gjasa të jetē DMT1. Njē diabet melitus me fillim në mënyrë incidioze, pacient obez duhet konsideruar DMT2.
- Mosha - Pacientët me DTM2 pērgjithēsisht paraqiten pas fillimit tê pubertetit (pothuajse rẽ gjitha rastet $>10 \mathrm{vjeç}$ siç tregohet nẽ figurēn 1 , ndërsa ata me DTMI shpesh paraqiten nẻ moshĕ mẽ tẻ hershme. Rreth 45% e fêmijẻve me T1DM prezantohen para moshës 10 vjeç. (147)
 konsiderueshëm i pacientēve tè diagnostikuar si DMTI dhe ADM té jenë́ mbipeshe, duke sugjeruar mundësinë e DMT2. Pacientèt me DMT2 zakonisht janē obeze (indeksi i mases trupore (BMI) \geq P95 per moshēn đhe giininé). Ne tẻ kundërt, fëmijêt me DMT1 zakonisht nuk janë obezè dhe shpesh kanë histori té humbjes se peshës kohẻt e fundit ($<\mathrm{P}_{35}$, megjithëse deri nẻ 25% janë mbi peshẻ (BMI \geq Pes.95). Kontrolli metabolik jo i mirë i diabetit tip 1 bēn qeé shumẽ pacientë të mos marrin peshë. Rreth 20-30\% e pacientève me diabet tip 1 që trajtohen me terapi intensive mund bēhen mbipeshë ose obezë. (379,390)
- Historia familjare - pacientēt me DMT1 vetëm nẽ 10% kanẽ një tẽ afêrm të afêrt me diabet ndërsa ata me DMT2 deri né $75-90 \%$. $(391,392)$
- Insulinorezistenca - DMT2 karakterizohet nga rezistenca e insulinés me defiçit relativ tẻ insuliněs (mě shumê sesa apsolut) dhe nivele tẻ larta tê C-peptidit nê gjëndje esell. Rezistenca ndaj insulinēs dhe karakteristika te tjera te diabetit tẻ tipit 2 mund tę shfaqen nẻ̉ pacientêt me diabet tę tipit 1 me mbipeshẻ, veçanërisht né ata qẻ kané njee histori familjare diabetit te tipit 2. (393) Ndërmjet pacientēve me DMT1, deri né 25% kanē të dhēna bickimike të rezistencēs së insulines dhe rreth 12% kane acanthosis migricans. (394) Pacientet me DMT1 kanë nevojê për insulino-terapi gjithë jetēn, ndërsa shumé pacient me DMT2 me kalimine kohẽs e humbasin funksionine qelizave beta dhe mund të kērkojnë insulin për kontrollin e glukozës. Kēshtu, nevoja për insulin nē vetvete nuk e diferencon diabetin tip 1 nga tipi 2 . Përveç kësaj, vetë hiperglicemia mund të
dęmtojè funksionine qelizave beta tę pankreasit dhe tè pèrkeqèsojè rezistencên ndaj insulinēs．Pacientët e rinj tē diagnostikuar me DMT2 kanē 50 deri 90% acantosis nigricans（shenjë̀ e rezistencès se insuliness），hipertension，dislipidemi dhe sindrome ovari polikistik（ne vajzat）．（391）
Ekzaminimet laboratorike ndihmoinê né dallimin midis DMT1 dhe DMT2． Ndër ekzaminimet që sugjerchen pěrméndim si mé psohtę：
－Glicemia dhe ekuilibri acidobazik－Pacientët me DMT2 zakonisht prezanto－ hen me hiperglicemi dhe nalleheré shfaqin KAD e cila nuk eshte manifestim tipik sepse ndodh në mungesë sē plotë të insulinēs．KAD në DMT 2 ndodh në rethana tê caktuara si në infeksione tê rēnda ose sêmundjeve tê tjera shkaktojnë ritje te己 sekretimit të hormoneve anti－insulinike dhe rritje tē mëtejshme të insu－ lino－rezistencès．Sekretimi tashmë̀ i dēmtuar i insulinës nuk është nē giendje t＇i pērgiigjet kërkesës së rritur，duke çuar në hiperglicemi，e cila mund të dēmtojë më tej sekretimin e insulinēs pērmes glukotoksicitetit．Kështu，ketoacidoza muk mund tê merret si njḕ indikator absolut qẻ pacienti ka diabet tipit l ose qê do tê kërkohet insulino－terapi afatgjate．Pacientēt me ADM shfaqin ketoacidozē në prezantiom，si mjedhojè kjo karahteristikè nuk ęshtè ndihmêse pêr tè dalluar da－ betin tip I nga tipet e tjera．
－Autoantitrupat－nuk ekziston asnjé test imunologjik specifik pẽ̀r tē dalluar tipet e diabetit．DMT1 sugjerohet nga prania e autoantikorpeve qarkulluese ICA，GAD65，IA2 dhe ZnT8．Megiithatë mungesa e autoantikorpeve nuk e pēr－ jashton mundふ̊sinẻ e DMT1．Autoantitrupat janêtê pranishěm nẻ 85\％teٌ rasteve tē DMT1 referohet si diabeti tip 1A dhe mungojnē në 15\％tē rasteve，referohet si diabet tiplB．（384）Gjetja e markuesve tê autoimunitetit te ishujve né fillim tê sëmundjes në njè grup të konsiderueshëm fëmijēsh me DMT2 ështê njē e dhënë e shtuar mbi nocionin e çabetit tê ndërmjetēsuar nga imuniteti si njĕ en－ titet i veçante dhe uniform klinik dhe patologik．（291，395，396）Pacientett me DMT2 sidanos ata obezē，rraca $є$ bardhë dhe meshkuj kanë tē pranishëm një ose mé shume autoantikorpe（IA－2，GAD－65）dhe mand té progresojne ngadale d九ejt deficitit tē insulinēs，（394）Praria e autcantikorpeve nē pacientēt e supo－ zuar me DMT2 mund tę identifikojë pacientět me DMT1 autoimun me fillim tẽ vonẽ apo tẽ ngadaltê（diabeti autormun latent nẻ adult（LADA）dhe qẽ kërkojně insulin．（397－399）Testimi i autoimunitetit tè qelizave ishullore duhet tê konsid－ erohet në pacientēt obezẽ që kanẽ fillim akut．N．q．se kjo muk êshtẽ e mundur ose n．q．se pacienti ka acantosis nigrans，pèr tè reduktuar dhe fremuar ecurine e diabetit nevojitet insulin pür disa muaj shoqüruar e reduktimin e peshës，ush－ trime fizike dhe terapi hipoglicemike sipas nevojës dhe qartësim të diagnozēs． Nē pacientèt që kanê karakteristika mikse dhe janê tê vęshtirè tę klasifikohen， klasifikimi bazohet në praninë ose mungesēne autoantikorpeve anti ishullor dhe
pranise ose mangesés sè ndjeshmèrisé sé insulinss. (384) Matia e nivelit te autoantikorpeve nevojitet kur diagnoza e diabetit tè tipit 1 ose tipit 2 éshtë e pasigurte nga tę dhannat klinike:
 tare me sulfonilure ose mefforminẻ
- Pacient me histori personale ose familjare për sěmundje autoimune
- Fémijé ose adoleshent me mbipeshè ose obez qẻ prezantohen me diabet dukshěm tip 2 , tẽ cile̊t nẽ fakt mund te kenẽ njé paraqitje tẽ hershme tẽ dabetit tip 1 .
Matja e mẻ shumẽ se njê antitrupi i rrit gjasate njê rezultati pozitiv, por është gjithashtu mjaft e kushtueshme. Nēse një ose më shumë prej antitrupave është i pranishëm, dhe veçanêrisht nëse dy ose më shumē janë pozzitive, pacienti duhet tê konsiderohet si diabet tip 1 dhe duhet të trajtohet me insulino-terapi zēvendësuese, pasi këta pacientē reagojnë dobēt ndaj dietēs dhe terapisē me hipoglicennik oral. Antitrupet e insulinës nuk duhet të maten nëse pacienti ka marrē insulino-terapi pēr ≥ 2 javē, sepse kjo do të gienerojë antitrupa të insulinçs.
- Niveli i Insulinës dhe C-peptidit - Matjet e insulinés ose C-peptidit nẻ fillim ter diagnostikimit té diabetit mund të mos jenē tē dobishme sepse gjatē fazēs sē "muaji i mjaltit" në diabetin tip 1 mund tę kemi njě masẻ tê konsidenueshme qelizash beta tě padëmtuara dhe anasjelltas, toksiciteti i glukozęs/ lipotoksiciteti dëmton sekretimin e insulinẽs nè kohën ne vlersimit. Matja e C-peptidit ose insulinès mund tê jenè me vlereٌ the mjaft indikateve për DMT2. Nivelet e larta te insulinees dhe C-peptidit nè giendje esell sugjerojné DMT2. Nivelet e papertshtatshme teٌ ulc̈ta ose relativisht normal me hiperglicemi sugjerojnê DMT1. Nê prezantim, gjatê diagnostikimit pêr herẻ te̊ pare, nivelet e insulinës the C -peptidit mund te frenohen edhe nga hiperglicemia prandaj kėshillohet qê ato tê vlerëschen pasi tè jeteß vendosur kontrolli metabolik apo nommoglicemia. Nē individēt që vlerat rezultojnë nomale duhet tẻ pērsēnten pas një viti ose mē vonë. Njä individ me nivele të vazhdueshme normale C-peptidi mund tē trajtohet si DMT2, pavarësisht nga prania cse mungesa e autoimunitetit tē lidhur me diabetin. Tipet e tjera të diabetit melitus që shfaqen nē moshēn pediatrike janē mē të malla.
- Njëi ri afrikano-amerikan me diabat me fillim akut, jo obez, me histori familjare prej 3 brezash dhe pa markues tè autoimunitetit ishullor ështě tregues i transmetimit autosomal dominant ka me shume giasa te kete ADM
- Nęqoftëse pacienti esshtē i dobět, duhet tê merren antikorpet anti-ishullore (shumé ndihmés) the ne̊se janĕ pozitiv duhet tẽ konsiderohet zbulim i hershëm i DMT1. Mungesa e autoantikorpeve ishullore në një individ tè dobët mund të indikojé MODY, nê kěto rast testimi i anêtarěve tè familjes éshtê ndihmẽs; modeli i transmetimit autosomal dominant mund të mos vihet në pah nëse nuk
testohen anestarèt e paprekur te̊ familjes.
Pavarësisht pasigunisë në klasifikimin e diabetit, mjeku klinicist duhet të përcaktojë trajtimin e pacientit duke u nisur nga karakteristikat individuale, dhe jo nga klasifikimi absolut diagnostik. Duke pasur parasysh riskun e ketoacidozeैs, insulina duhet te fillohet edhe nê çdo pacient, pavarësisht nése mendohet se kaně diabet tip 1 ose 2 , i cili është katabolik (humbje peshe cse dehidrim në mjedisin e hiperglicemise) ose që ka teٌ thëna tê rritjes se ketogjenezess (ketonuri ose acidozé).

1.10.1 Diabeti tip 1

Diabeti tip 1 (DMT1) karakterizohet nga shkaterrimi autoimun ose idiopatik i qelizave beta pankreatike, duke rezultuar në mungesē absolute tē insulinēs. $(3,4)$ DMT1 përbēn $5-10 \%$ e rasteve totale e diabetit né botë, (400) dhe ështẽ tipi mè i zakonshëm i diabetit nē fermijët dhe adoleshentët. (401) Në shumicën e rasteve DMT1 në fëmijēt the adoleshentët ndodh për shkak të shkatërrimit të qelizave beta me ndērmjetësi autoimune (ose tipi 1a) dhe nje pjesë e vogël e rasteve është rezultat i shkatërrimit idiopatik ose insuficencë e qelizave beta (tipi 1b). Markuesit imun të stikatërrimit të qelizave beta si autoantitrupat ndaj insulinès (IAA), citoplazmés së̀ qeliz\&s ishullore (ICA) anti acidit glutamik dekarboksilazẽ 65 (GAD65), anti proteinẽs e ngjashme me tirczinẽ fosfatazë siç êshtẽ proteina 2 shoqërruese e insulinomès (IA-2 dhe LA-2 beta) dhe anti transportuesit te zinkut (ZnT8) janẻ te pranishěm deri nẻ $\sim 80-90 \%$ te individeve qe nẻ kohēn e diagnozēs. (402) Mungesa e autoantikorpeve ndaj qelizave ishullore tẻ pankreasit nuk e përjashton mundẽsinẻ e diabetit tip 1. Disa pacientẻ me mungesĕ absolute tę insulinés nuk kanẽ tè dhënta autoimuniteti apo tẽ ndonjë shkaku tjetěr të njohur te己 shkatērrimit tè qelizave beta. Këta pacientẻ klasifikohen si diabet melitus idiopatik ose tip $1 \mathrm{~b}(403)$ të cilët ashtu si edhe tipi la sepse kanē tē njëjtat karakteristika Winike por jo komponent autoimun. (404) Autoantikorpet shfaqen nę fazęn preklinike dhe jane shenja e pare e dallueshme e zhvillimit të autoimunitetit ndaj qelizave- β. (405,406) Prania nē scrum ε autoantitrupave në njĕ individ asimptomatik indikon për misk tē rritur tẻ zhvillimit tē DMT1 në të ardhmen. (405,406) Markuesit e automunitetit mund tē pērdoren për të identifikuar subjektet nē rrisk gjatë fazês preklinike ku ndërhyrja autoimune ka mē shumë gjasa tē jetë efektive dhe giithashtu të jenë mjet trajtimi. Pacientēt me DMT1 karakterizohen jo vetêm nga praria c auto-antikorpeve dhe nevoja për insulino-terapi githè jetẽn por edhe nga, mosha e vogèl, indeksi i ulur i masës trupore (BMI), sekretimi i ulur i insulinës endogjene apo deficiti apsolut i saj dhe niveli i larté i hemoglobinēs sé glukozuar (HbAlc) nê momentin e diagnozés (Tabela 2). Me rritjen e mbipeshěs nê fèmijěri, $20-25 \%$ e fëmijēve tẽ diagnostikuar me DMT1 jane̊ mbipeshè, e cila èshtè mè e lartê se prevalenca e mbipeshès nê fémijêt pa DMTI. (215, 407) Karakteristikat klinike metabolike, imunologjike, serologjike q diferencojnẻ̉ DMT1 nê fémijett dhe adoleshentêt nga tipet e tjera te diabetit qé shfaqen
né kêtẽ grup-moshe (përfshi DMT2, MODY, LADA, ADM dhe neonatal, etje) jane përmbledhur në tabelēn 1.12 .

Tabela 1.12. Klesifizimi i tipeve ẗ̈ aiathet̀ qè shithen në fëmijet.

	DMT1	DMT2	ADM	LADA	MODY
Prevalenca	E shpeshté, nẻ mitje	Ne rritje			
Mosha e prezantimit (vite)	Gjate femijèrrisé, adoleshencés shumica < 25 vjec, por mund tē ndodhë në́ cdo moshe	Pubertet, adult, nả̉ me̊nyre tipike > 25 vjeç por incidenca rritet nê adoleshence, paralel me ritmine ritur te obezitetit në femijèt dhe adoleshentet**	Pubertet	Adult $>30 \mathrm{vjeç}$	$\begin{aligned} & \text { Pubertet, } \\ & <25 \text { vjeç } \end{aligned}$
Rraca ose etnia predominuese	Te giitha, mé shpesh në të bardhet johispanik (<aziatikët)	Te gjitha?	Afro-amerikan-		Kaukazian
Gjinia (F:M)	1:1	-2:1			
Proporcioni i diabetit	80\%		< 10%	2-12\%	< 5%
Histori familjare (të afêrm të prekur)	$\begin{aligned} & \text { Jo i shpeshte, } \\ & 10-15 \% \end{aligned}$	I shpeshte, 70 90\%	>75\%	+\%	$100 \% \text {, }$ Multigjener ata, >2 breza
Auto- Imuniteti Ishullor	I forte (+++), pranishĕm ${ }^{\text {n }}$	Mungon ${ }^{\text {a }}$	Mungon	$\begin{aligned} & \text { +, lehtesisht } \\ & \text { i mitur } \end{aligned}$	Mungon
Sekretimi i insulinës dhe c-peptidi	Shumẽ i uletimungon	Variabël	Mesatarisht i ulur	I ulur por i matshēm	I ndryshëm
Sensiviteti	Normal kur	I ulur	Normal		Normal

ndaj insulines	kontrollohet				$\begin{array}{\|l} \text { (i ulur në } \\ \text { obżzatt) } \end{array}$
Mënyra e fillimit	Tipikisht akut, i r ரёndë	Incidioz nẽ tẽ rēndē	Akut, 1 ศセ̈ndë	Subklinik, mallǎheré akut	I ngadaltes,
Kohërgatya e simptomave	Dite-jave	Jave-muaj			
Pesha, Oberitet ose mbipesha, BMI	i ulur, 20-25\% shfaqin mbipeshe ${ }^{\Delta}$ Zakonisht tē dobat por me epideminë e obezitetit, mbipesha dhe obeziteti né kohëne diagnozēs po bảhet méi shpeshtë spercentili 75 Normal (ose nẻnpeshe)	$\begin{aligned} & >90 \% \\ & \text { mbipeshē } \\ & >80 \% \text { obeze } \\ & >\text { percentilin } \\ & 85 \end{aligned}$	Si nê popullate	Normal, rralléehere mbipeshē ase obezē	Similar to general population Joi zakonshëm
Rrisku për tu shfaqja me KAD	I lartë, deri nē 80\%	I ulĕt	I zakoshëm	I ulët	I ulët, i mallë, rreth $1 / 3^{*}$
Acanthosis nigricans	$12 \%{ }^{\circ}$	50-90\% ${ }^{5}$			
Trashëguesh mëria	Jo mendeleane, zakonisht sporadk,		Autosomal dominant		Autosomal dominant
Inheritance	poligjenik	Poligjenik			Monogjenik
HLA-DR3/4	$\begin{aligned} & \text { HLA+H, } \\ & \text { shoqünimi } \\ & \text { fortē } \end{aligned}$	Nuk shoqërohet ose lehtësisht		HL.A	
Vartësia nga Insulina	Po, permanente	Endryshme		>6 muaj pas diagnozēs	Jo ose disa vite pas diagnozés

Inulinoterapi	Menjēherë nē diagnoze	Jo e shpeshtē	Endryshme	
Profill lipidik	Normal	Shpesh hipertriglicerid emi dhelose hiperkolesterol emi	Normal nê hipertriglice ridemi	
Rrisku kardiovaskula r	I ritur	I mitur	I mitur	
Funksioni i qelizave - β	Humbje funksioni	Normal osei mitur	I ulur	
Insulinorezist enca	mungon (rralleheré i rritur)	1 rritur	$\begin{aligned} & \text { I rrituri } \\ & \text { pandryshuar } \end{aligned}$	
Nivelif Cpeptidit në diagnozë	Jo i matshěm (rrallë i ulur)	Normal ose i ritur	$\begin{aligned} & \text { I ulur por i } \\ & \text { matshēm } \end{aligned}$	
Rrisku i komplikacion eve në diagnozë	I ritur	Lehtesisht i mitur	I vogel	
Shpeshtësia e komplikacion eve afatgjata në diagnozë	I vogel	I larte	I vogel	

Burim: $(4,11,379,384,390,394,408-416)$

Bazuar nè studimet histologiike té pankreasit te̊ pacientëve me diabet tip 1 tê diagnostikuar pěr herě tę parě, masa e qelizave beta ështě e reduktuar $\sim 80-90 \%$ ně kohĕn e manifestimit klinik tẻ ssêmundjes. (210,417) Kohżzgatja e fazes̃ preklinike mund tẽ variojè me muaj, vite apo dekada nẽ varěsi te̊ intensitetit teٌ proçesit patologjik the rigjenerimit të qelizave beta. $(4,262)$ Megjithëse janë identifikuar giene të ndryshme (poligjenik) nẽ etiologjineٌ e diabetit tip 1, ka pak tę dhěna pèr mekanizmin $q e \bar{e}$ shpērthen autoimuritetin dhe qē nxit progresionin nē sërrundje. Diabeti tip 1 mund tę zhvillohet nê çdo moshę por graviteti i prezantimit klinik shfaqet mjaft i larmishěm the sipas moshës. $(\mathbf{4 1 8}, 419)$ Mè herēt diabeti tip 1 konsiderohej si një sërmundje e fèmijërise dhe moshès adulte tě re, por tě dhěnat mè tě fundit sugjerojne se vetëm rreth $50-60 \%$ e individēve me çabet tip 1 janë mé tè vegiēl se $16-18$ vjeç né prezantim dhe
shpeshtessia ulet drejt moshěs adulte. (148) Së fundmi, diabeti miks ose i dyfishtẽ (tipi 1 plus tipi 2) konsiderohet në rastin kur në tē njējtin individ janē të pranishme karakteristika të diabetit tip 1A (autoimuniteti) dhe të tipit 2 (obezitet, insulin-
 Amerikan me DMT 1 pa tę dhêna tẽ autoimuniteti kanè diabet melitus atipik (ADM), $(\mathbf{4 2 1}, 422)$ ADM fillon gjatê fèmijèrisě dhe rralle pas moshēs 40 vjeç the nuk shoqẽrohet me HLA specifike.

1.10.2 Diabeti tip 2

Diabeti melitus tip 2 (DMT2) ështè tipi mé i zakonshëm i diabetit nẻ adultēt. Ne vẽndet e zhvilluara (Shtetet e Bashkuara, Kanada dhe Evropé), DMT2 pērbën 90-95\% e të gjithë popullatẽs diabetike (adult dhe fèmije) dhe pëtbën një përqindje edhe më tê lartë nē vendet nē zhvillim duke u bërè një çrregullim i zakonshëm. (423) Nē Amerikën e Veriut, DMT2 mbizotëronnëtë rinjtë amerikan vendas, afro-amerikan, hispanik, ishulli i Paqësorit dhe aziatiko-amerikanët. (408) Pas viteve 1990, incidenca dhe prevalenca e DMT2 në fèmijët dhe adoleshenēt ështẽ rritur ndjeshëm, veçanērisht në disa vẽnde che grupe etrike. Mé shumè se $10-50 \%$ e fexmijëve dhe adoleshentêve tê grup-moshës 10 19 vjeç qé diagnostikohen pār heré tê parë me diabet jane DMT2. (424) Shkaqet janë predispozita gjenetike e veçantë nę̉ disa grupe etnike, riitja e shpeshtësisẻ sê mbipeshss dhe obezitetit (predominon shpémdarja abdominale e indit adipoz) dhe ulja e aktivitetit fizik, rritja e urbanizimit, zhvillimi ekonomik. DMT2 karakterizohet nga larmishméri e madhe Klinike, metabolike (hiperglicemi, deficitit dhe insulino-rezistence) the gjenetike. Nê përgjithêsi, diabeti tip 2 karakterizohet nga fillimi nề moshê mê tê madhe (pothuajse te gjitha rastet pas moshës 10 vjeç siç tregohet nê figurēn 1), (147) mbipesha dhe obeziteti (indeksi i masës trupore (BMI) $\geq \mathrm{P}_{95}$ për moshēn dhe gjininè), (379) mungesa e aktivitetit fizik, histori familjare pozitive $(\mathbf{3 9 1}, \mathbf{3 9 2})$ dhe manifestime te insulinorezistencës si acanthosis nigricans, hipertension, dislipidenni (trigliceride të mitura, ulje tê HDL-kolesterolit, hiperlipiderni postprandiale) dhe sindromé ovani polikistik (né vajzat), (391) nivele tè larta të insulinès dhe C-peptidit në giëndje esēl, ketoacidozé diabetike, njē ose mé shumé autoantikorpe (LA-2, GAD-65). (394) Frekuenca e ketonurisē ose ketoacidozës në kohën e diagnosfikimit të DMT2 ēshte e larmishme dhe 9.8% e të rinjve me DMT2 kanē antitrupa LA-2 dhe/ose GAD. (390) Kêto veçori janè mé pak tê mundshme nẽ fèmijĕt me DMT1.

1.10.3 LADA (diabeti autoimun latent në adultët)

LADA sshte nje formé e lehte e diabetit autoimun me predispozite gjenetike karakterizuar nga heterogjeniteti gjenetik, fenotipik, imunologiik, variabilitet i shprehur i ritmit tę shkatērrimit tę qelizave beta, shkalla e ndryshme e insulino-rezistencēs dhe
autoimunitetit. (393,425,426) Diagnoza e LADA bazohet sipas kritereve tẻ pęrcaktuara nga Shoqata pèr Imunologii dhe Diabet (IDS); (1) mosha >35 vjeç (zakonish 30-50 vjec), (2) prania e tê paktën njee prej autoantitrupave anti ishullor (mee shpesh anti GAD65) nẽ momentin e diagnozęs (3) mungesĕ e nevojēs për insulinẻ të paktēn nẽ 6 muajět e parë pas diagnozęs. (427) Shpeshtēsi e LADA eshtę e ulèt (398,428, 429) por esshte forma mé e shpeshtẽ e diabetit autoimin që shfaqet nę moshさ̌n adulte dhe përbên $2-12 \%$ e te gjitha rasteve tē diabetit nẻ popullatẽn adulte. (428) Ne Europe, Azi dhe Amerikěn e Veriut, $4 \%-14 \%$ e pacienteve te diagnostikuar fillimisht si DMT2 dhe me autoantikorpe shoqëruese pozitiv për DMT1 ri-diagnostikohen më pas si LADA. (429439) Nga pikpamja gjenotipike, LADA konsiderohet si njé formé mikse e te dy tipeve te diabetit sepse ndan karakteristika gienetike me DMT1 (HLA, INS VNTR, PTPN22) the me DMT2 (TCF7L2) (440) Gjenotipi (HLA)-DRB1*04-DQB1*0302 dhe HLA-DRB1*0301-DQB1*0201, mjaft i zakonshē̈m nē DMT1 me fillim nē moshën e re, takohct më rrallē me mitjen c moshēs së shfaqjes sē sëmundjes dhe ështē mẽ pak i shpeshtë në LADA se nē DMT1 me fillin nē adult (430,441) Gjene tẽ tjera predispozuese tē rgjashme me DMT1 né pacientēt me LADA janë polimorfizmat e gienit PTPN22 (protein tyrosine phosphatase nonreceptor 22), gienit te INS VNTR, (441, 442) dhe gienit CTLA4.(443) Gjithashtu, pacientët me LADA kanë rrisk tē ritur pêr tê mbartur gjenin e faktorit 7 -like 2 tẽ transkriptimit (TCF7L2) nẽ mẽnyrẻ tê ngjashme si pacientęt me DMT2.(397) Si një formé e diabetit autoimun, LADA karakterizohet nga pozitiviteti i autoantikorpeve anti ishullor specifik dhe përgjigie me ndërmjetesi qelizore ndaj qelizave beta e ngjashme si ne DMT1. $(398,444,445)$ Ende diskutohet nęse LADA dhe DMTI nê adultest janë i njējti entitet klinik pesi pacientēt me LADA janẻ pozitiv pẽr autoantikorpe dhe shpesh kërkojnẽ terapi brēnda vitit pas diagnozës. Autoantitrupi mē sensitiv dhe më i shpeshtē nē LADA ēshtē anti-GADAs (8.8%) ndërsa antikorpet $\mathrm{IA}-2 \mathrm{~A}$ the $\mathrm{ZnT8}$ janề tê pranishẻm vetëm nề njê numẻr tê vogel pacientësh (0.9%) dhe në 24.1% të pacientëve janë tē pranishēm 2 autoantikorpe(431) Pacientët me LADA karakterizohen nga progresioni mē i ngadaltë i shkatērimit tē qelizave beta se në DMT1 siç tregchet edhe nga rēnia mē e rgadaltē e vlerave tē C-peptidit. (446) Nga pikëpamja Klinike LADA është njé sëmundje heterogjene me karakteristika imunologjike tē ngjashme me DMT1 dhe DMT2 (tabela 1) për shkak të mekanizmave fiziopatologijk të ndryshēm. (427) Klinikisht karakterizohet nga shfaqje nę moshè tẽ madhe, variabilitet i nivelit tè indeksit tẽ masěs trupore (BM1) mundësi mē tē vogël për ketozë, variabilitet i titrit dhe numrit të antitrupave, dhe mungesĕ e menjehershme ose né diagnozé e nevojés pěr insulin por progresion mè tẽ ngadaltę tè shkatęrrimit tę qelizave β, shlkallê tę ndryshme tě insulinorezistencěs dhe nê varèsi ndaj insuliněs pas disa muajsh apo vitesh (pěr té paktěn 6 muaj) (447,448) Pacientęt me titęr te lartê tê antitrupave GAD65 ne krahasim me ata me titër tě ulèt zakonisht kanẻ BMI mẽ tê ulêt, sekretim mê tê ulèt tẽ insulinès
endogjene (vlerésuar nga përqęndrimi i C-peptidit nè serumin e stimuluar) dhe progresojnë më sh甲ejt né varēsinë ndaj insulinës. Pacientë qē kanë titër të ulèt të antitrupave, karakteristika tę insulino-rezistencess si BMI mê e lartê dhe përparojnè mĕ ngadalè drejt nevojës pe̊r insulin. Kështu, LADA konsiderohet né spektrin e defiçitit tê insulinẽs midis diabetit tę tipit 1 dhe tipit 2. Rreth 7.5 deri nẻ 10% e adultẽve neै popullatat me prevalencẽ teٌ lartẻ teٌ DMT1 dhe DMT2 siç éshté popullsia Skandinave kanẻ autoantitrupa garkulluese anti antigjeneve tę qelizave beta tę parkreasit (ICA ose GAD65). $(449,450)$ Prania dhe niveli i antitrupave anti-GAD ase ICA mand teै ndihmojnë për të identifikuar pacientēt që konsiderohen si diabet tip 2, të cilët kanë gjasa ti përgjigien jo miré terapisë me medikamente hipoglicemike crale, kęrkojnë insulinē the tê jenē në rrisk tè rritur pēr zhvillim ketoacidozēs. (447, 448) Si përfudim, giithmonë duhet tę merret në konsideratë diagnoza c LADA kur diabeti diagnostikohet nē moshën adulte, veçanënisht kur karakteristikat klinike sugjerojně kētë formẽ diabetí nē prani tē titrit tē ritur tē autoantitrupave anti ishullor (vecancerisht anti GAD65) dhe nē mungesë tē nevojēs pēr insulinē nê momentin e diagnozēs. Trajitimi i LADA konsiston në mbajitjen e kontrollit metabolik dhe ruaitjen e funksionit tê qelizave beta pèr tę ulur rriskun komplikacionet afatgiata tẻ diabetit. Kẻshillohet insulin bazale nẻ dozë tē vogēl, DPP-4 (Dipeptidyl peptidasc 4 inhibitors), GLP-1RA (glucagon-like peptide 1 receptor agonist), terapi nutricionale si nê dmt1, aktivitet fizik, reduktim tê peshês nẽ obezert. Sulfunilurea nuk këshillohet si terapi e linjës sẻ pare. Janẽ duke u zhvilluar studime pêr tę përcaktuar nèse trajtimi i hershẻm me insuline̊ ose pěrdorimi i terapisê imunomodulatore mund tę parandalojề progresionin e sěrmundjes. (69)

1.10.4 MODY (diabeti me fillim në adultëri i të rinjve)

MODY është nje c̣rregullim klinikisht dhe gjenetikisht heterogien, familjar (diabet i shfaqur ně tee paktën 3 breza të njépasnjèshme), jo insulin-vartës, me trashẻgueshméri autosomale dominante monogjenike, prek pothuajse në mënyre eskluzive Kaukazianët, mungesa e autoantikorpeve, mungesē e insulinorezistencēs (mungesa ε obezitctit, acantosis nigricans), shfaqet nēn moshēn 25 vjeç (në moshë të re giaté adoleshencés ose moshën adulte tę re), karakterizuar nga difekt primar i sekretimit tē insulinës, hipergliceni e lehtē the mungesa e ketoneve. $(\mathbf{3 1 , 8 9 , 9 0})$ MODY ēshtē forma mē e zakonshme e diabetit monogjenik dhe përbën 1-5\% të dabetit melitus, ($\mathbf{(1 1 , 9 1 , 9 2)}$ Gjenet e MODY shprehen nẻ qelizat beta pankreatike, tę cilat kontrollojnẽ zhvillimin, funksionin dhe regullimin e tyre; glukokinaza (koduar nga GCK) vepron si sensor i glukozès qê kontrollon kufirin pèr sekretimin e insulinēs dhe pjesa tjetẽr vepron si faktorẻ transkriptimi, qẽ rregullojnē zhvillimin dhe masěn e qelizave beta pankreatike. Janê identifikuar anomali gienetike tê ndryshme, ku secili shkakton njé sęmundje të vecantě MODY. $(93,94)$ Mutacionet nẽ kěto gjene shkaktojně dëmtim tě ndjeshmérisĕ sê glukozẽs, dēmtim tę sekretimit tẻ insulinês me ose jo prekje minimale tê veprimit tê
insuliněs. (34) Jane identifikuar 6 difekte molekulare (HNFIA, HNF4A. GCK, TCFI, PDX1, TCF2), të cilat prekin funksionin e qelizēs beta. Mutacionct më tē zakonshme tè identifikuara perrgjegjëse $\approx 85 \%$ e te githa rasteve te MODY jane mutacionet nế gjeninHNF1A, HNF4A the GCK; (95) $52-65 \%, 15 \cdot 32 \%$ dhe -10%, respektivisht. (34) Mutacione tẻ tjera përgjegjës pêr MODY janes; mutacionet nè gienin KLFI 1(MODY7), në gjenin lipaze ester karboksil (CEL) (MODY-8), neٌ gjenin PAX4 (MODY-9), neٌ gienin e insulinさss (INS) (MODY10), nẻ gjenin BLK (MODY-11), nè gienin kasetẻ ATP-lidhesse, nẻnfamilje C , anestar 8 (ABCCB)(MODY-12); nẻ gjenin e kanalit te kaliumit, korrigjimii i brendshēm, nēnfamilje J, anētar 11 (KCNJ11) (MODY-13); nē gienin APPL1(MODY-14) dhe izodisomia uniparentale paternale i gjeneve tee kromczonit 6q24 (UPD6) janë të rralla.(34) Mutacionet nē INS, ABCC8, dhe KCNJ11 shoqērohen mê shpesh me diabetin mellitus neonatal. Disa pacientë mund të kenë fenotipin klasik të MODY por nuk kanē mutacion tē identifikuar në njē nga gjenet e MODY ndërsa disa anētarë tē familjes me difekte gienctike nuk zhvillojnë diabet për arsye ende të panjohura.(93) Pacientët me MODY janē mjaft heterogjen. Njē anammeze e detajuar pērfshi moshën, indeksin e masës trupore (BMD), prania cse mungesa e historise familjare tę diabetit simptomat prezantuese dhe varesia e insulinẽs éshtè e rèndësishme por jo e mjaftueshme në vendosjen e diagnozês. $(34,128)$ Pavarësisht perrshkrimit klasik te MODY si diabet mellitus me fillim para moshess 25 vjec, trashëgimi autosomale dominante dhe jo-insulinovartes, $(\mathbf{8 9 , 9 4}) \mathrm{ka}$ ngjashmëni teß konsiderneshme né prezantim me diabetin tip 1 dhe 2 . Shumẽ pacient me MODY fillimisht keqklasifikohen si diabet tip 1 ose si tip 2.
$\mathrm{Nẽ}$ njes pacient té supozuar me diabet tę tipit 1 i cili trajtohet nes̃ měnyre teٌ papershtatshme me insulin, matja e autoantikorpeve (ICA, GAD65, IAA, dhe IA-2) duhet të kryhet para depistimit gjenetik pēr MODY. Prania e autoantikorpeve e bën MODY-in shumé tę pamundur duke e dalluar nga diabeti i tipit 1. (92). Megiithatê ne një studim prevalenca e antitrupave GAD dhe IA-2 nē MODY ishte e njëjtë me subjektet normale ($<1 \%$). Kjo mbështet vlerësimin rutinë të autcantitrupave ishullor para se të kërkohen ekzarninime gjenetike molekulare mē tē shtrenjta. (126) Nē një pacient me karakteristika klinike qē sugjerojnë pēr MODY por qē identifikohen autoantitrupa ishullor, veçanërisht e IA-2, diagnoza e MODY vēshtirësohet prandaj për tē vendosur diagnozën definitive nevojiten ekzanuinimet gjenetike. Eshtëe rēndësishme tẽ diferencojmé MODY-in nga diabeti i tipit I sepse trajtimi optimal dhe rrisku pér ndërlikime ndryshon me dafektin gjenetik bazē. Si shembull, pacientët me MODY për shkak të mutacioneve HNF1A ose HNF4A shpesh keq diagnostikohen si diabet tip 1
 insulině. Ndërkohẻ, qě shumê nga kẻta pacienté mund té menaxhohen me sukses me monoterapi sulfonilure.
Eshtë e vështirë tee diferencosh MODY dhe diabetit tě tipit 2. Shumẽ adultè tè rinj
fillimisht klasifikohen si diabet tip 2 pavaręsisht se mund té plotésojne tę gjitha kriteret Klasike të diabetit monogjenik. (127) Prezenca e një historie familjare (jo-shumë generata) nuk e diferencon MODY nga diabeti tip 2. Mungesa e rezistencès ndaj insuliněs dhe e obezitetit nuk šshtẻ karakteristik për MODY nẻ adoleshentęt e supozuar me diabet tip 2. (34) Megithate, mungesa e obezitetit ose markuesve te insulinorezistencẻs êshtë ně pérgjithěsi një diskriminues i varfèr i MODY dhe diabetit tè tipit 2 nê moshẻn adulte. ($\mathbf{3 6 , 1 2 8}$) Pêrveç kësaj, dallimi i MODY-it nga diabeti i tipit 1 dhe tipit 2 lejon identifikimin më tẻ hershëm te ane̊tarěve té familjes né misk. Testet biokimike nuk mund tē diferencojnē nē mënyrë të besueshme tipet e MODY-it. Diagnoza e MODY-it mund tę vendoset pas vlereैsimit klinik tẽ kujdesshëm the ekzaninimeve biokimike, ndërsa nën-tipizimi i saktē ështē i mundur vetēm me anë të testeve gjenetike molekulare me sekuencim të drejtpërdrejtë të gjenit. Tipet e MODY karakterizohen nga njē variacion i gjëre i hiperglicemisë, nevojës pēr insulin, dhe miskut pēr komplikacione tē ardhshme. Vendosja e diagnozës molekulare specifike është mjaft e rëndësishme për diagrozēn e hershme, ndihmon të parashikohet ecuria Kinike e sëmundjes, trajtimi më i përshtatshēm dhe ka ndikime tē rēndësishone për anětaręt e familjes, këshillimin e duhur gienetik dhe shtrirjen e testeve gjenetike në anc̈tarët e tjerē tē familjes, riklasifikimin c diabetit në ata q̧ë eventualisht kanë zhvilluar diabet. (107) Zakonisht testet gjenetike për MODY indikohen kur ekziston njé indeks i lartě dyshimi (diabeti familjar me model autosomal dominant te trashëgimise p <2 breza), fillimi < 25 vjeç, jo-obez, testet biokimike janê nẻ përputhje me diagnozęn e diabetit dhe autoantitrupa ishullor negativ) pert te identifikuar mutacionin dhe konfirmuar diagnozèn. (34,36) Laboratocět ofrojnẽ ekzaminime kryesisht pèr mutacione në gjenin HNF4A, HNF1A dhe glukokinazẻ (GeneTest). Pe̊r anētare̊t e familjes mbartës të mutacioneve, testimi biokimik pēr tè konfirmuar diabetin duhet tē kryhet përpara se tê merret nê konsideratë testimi gjenetik. (107)

1.10.5 Shkaqe të tjera diabetit melitus

Shkaqe tē tjera tè ralla qè shfaqin hipergliceni dhe diabet mellitus në moshenn pediatrike janë më tê rrallë. Ndër to pērmëndim: defekte gjenctike tē funksionit tē qelizave beta, defekte të veprimit të insulinës, patologii kronike të pankreasit ekzokrin, endokrinopati, diabet melitus induktuar nga medikamentet, infeksione virale dhe sindroma gjenetike të ndryshme (tabela 1)

1.11 SËMUNDJET AUTOIMUNE SHOQËRUESE TË DLABETIT MELITUS TIP 1 NË FËMIJËT DHE ADOLESHENTËT.

Fëmijet dhe adoleshentèt me DMT1 janẽ nè misk mê tẽ rritur pēr tẽ shfaqur sẽmundje autoimune endokrine the jo endokrine te tjera krahasuar me fërijët e shëndetshēm.

Sęmundjet autoimune mẻ tê shpeshta qĕ shoqärojnè DMT1 janẽ: Sëmundjet Autoimmune tē Tiroides (SAT) ($15-30 \%$), Sënundja Celiake (SC) ($4-9 \%$), gastriti autoimun atrofik'anemi pernicioze (5-10\%), vitiligo (2-10\%) dhe semundja e Addisonit $(0,5 \%)$. $(\mathbf{4 5 1}, \mathbf{4 5 2})$ Sěmundjet autoimune mê rallẻ qě shfaqen nề fêmijĕt dhe adoleshentét me DMT 1 jane, hepatiti autoimun, sindrom autoimun poliglandular (APS) dhe insufiçenca ovariane primare. Shpeshtł̇sia dhe rrisku i shfaqjes së sëmundjeve autoimune shoqëruese tê DMT1 lidhet lidhet me predispozitëngjenetike, me anomaliteß imunologiike te ndryshme ndërmjet limfociteve B dhe T ; tendencés për tê vepruar kundër antigieneve specifike ose aftēsisē së ulur pēr tē zhvilluar tolerancē imune, (453) ku faktorë mjedisor tē shumte duke nxitur ase moduluar pérgigjen imme ndaj organeve tē ndryshme, çojnë nē shfaqjen e tyre. $(454,455)$ Faktorët gienetik predispozues që lidhen me DMT1, SAT, SC dhe AD përfshijnē gjenct HLA dhe gjenct jo-HLA. Pacientët me DMT1 qē shprehin gjenotipin HLA-DR3 kanē mē shumé gjasa tẽ shfaçin endokrinopati shoqārucse se ata që shprchin HLAA-DR4. (456) Autoantikorpet të cilēt konsiderohen markues tè rriskut tê sëmundjeve mund tē shfaqen pērpara diagnostikimit të DMT1, tê zbulohen në momentin e diagnozēs sē tij ose shfaqen mé pas. $(\mathbf{4 5 2}, 457)$ Shpeshtésia e autoantikorpeve dhe sémundjeve autoimune pērkatēse nē fémijēt me DMT1 dhe anētarët e familjes sē tyre janē më shpeshta sesa në popullatèn e përgithshme. (458-462)

1.11.1 Sēmundjet autoimune të tiroides (SAT)

DMT1 dhe sěmundjet autoimune tę tiroides (SAT) janë dy nga sermundjet autoimune
 né fémijèt dhe adoleshentët me DMT1 ($\mathbf{4 6 3}$) shpeshtẽsia e te cilave éshtẽ $2-4$ heré mẻ e madhe se në popullatën e pērgjithshme. (464) Tiroiditi limfocitik kronik ose siç njihet ndryshe tiroiditi Hashimoto eshtè forma klinike me e zakonshme (14-28\%) (452) the më rrallè sëmundja Graves $(0,5-7 \%)(\mathbf{4 5 2 , 4 6 5})$ Shpeshtesia e tiroiditit Hashimoto dhe sëmundjes Graves pērcaktohet nga titri i rritur i antikorpeve lidhur me tiroiden; antiTPO dhe/ose anti-Tg the anti receptorit tee tirotropines (TSH-R-Ab), (466) respektivisht. Shpeshtësia e SAT në pacientēt e diagnostikuar për herē tē parē me DMT1 varion nga $4.5-29.4 \%$ the 2.9-4.6\% në popullatën e përgithshme. ($\mathbf{4 6 7 , 4 6 8)}$ Rreth 30% e pacientëve me DMT1 gjatē ecurisë së tyre shfaqin SAT. (469) Autoantikorpet drejtohen kundër proteinave specifike té gjëndrěs tiroide; tiroglobulinẻs (Tg), një komponent i rëndēsishēm i koloidit tiroidien dhe tiroid peroksidazēs (antiTPO), njẻ enzimè qê merr pjesè nẻ sintezżn e hormonit tẽ tiroides. Né pacientêt me tiroidit Hashimoto, autoantitrupat anti-TPO identifikohen deri në 90% te̊ pacientëve ndërsa anti-Tg deri ně 5% tê pacientève. Antitrupat bllokues tê receptorit tirotropin, janê shpesh te̊ pranishme đhe né nivele te larta, veçanërisht nẻ pacientět tê cilět zhvillojnẻ hipotircidizëm autoimun. Deri nể 20% e pacientêve me DMT1 kanê
antikorpe anti-tiroid peroksidaze dhe/ose anti-tiroglobulin pozitiv. (470, 471) Antikorpet anti-TPO janë̉ të pranishëm nē 5-22\% të fémijëve me DMT1 (472) dhe deri nê 50% e tyre zhvilloinẻ SAT. Autommuniteti i tiroides esshtê veçanezrisht mẻ i zakonshém né pacientest me diabet tip 1A. (473) Né $17-25 \%$ e pacientẻve SAT diagnostikohen nè momentin e diagnozès sê DMT1, nè shumicěn e rasteve shfaqen brěnda $2,5-3$ viteve pas diagnostikimit (595) dhe malleherẽ i paraprijnẽ diabetit. (454, 463) Faktoreٌt rrisk për shfaqjen e SAT nê fèmijët dhe adoleshentêt me DMT1, janê pothuajse tē ngjashme me popullatẽn adulte tẽ tilla si gimia, kohärgjatja e diabetit, origjina etnike, prania dhe persistenca e antikorpeve anti qeliza beta (anti-GAD), mosha e pacientit ne้ diagnozĕn e diabetit, (474) dhe prania nëntipave HLA specifike.(464) Shpeshtësia e antitrupave anti-tiroide dhe prevalenca e tirciditit autoimun në fëmijēt the adolesentët me diabet tip 1 c̄shtë më e lartē tek vajzat, rritet me moshēn drejt maturimit pubertar, $(475,476)$ ritet me kohēzgjatjen e diabetit, $(477,478)$ dhe né fèmejḕt me persistencê mẽ gjatē tē autoantikoppeve anti-GAD. (467) Si shumë sēmundje endokrine autoimune, edhe SAT kanē predispozitë gienetike të cilat trashēgohen si tipare gjenctike komplekse the që shfaq̣en pas nderveprimit me faktorë mjectisor. (479) Shoqęrimi i shpeshté midis këtyre dy sęmundjeve shpjegohet kryesisht me karakteristikat gienetike tē pērbashkëta. Predispozita gjenctike e shfaqjes së SAT në fèmijèt me DMT1 pěrcaktohet nga polimorfizmat e gjeneve HLA dhe jo-HLA. Feemijet me něntipa HLA specifike si haplotipi HLA-DQB1*0302, (470, 480) DR3-DQ2/DRB1*04:01-DQ8 (481) kanę rrisk mê tê madh pẽr tê shfaqur tiroidit autoimun (470,480) Fëmijët tme haplotip HLA-DQA1*0301, DQB*0301 dhe DQB1*0201 kanë misk pēr tè shfaqur hipertiroidizēm. Fèmijēt me haplotipe HLA-DQB1*05 (DRB1*11:01-DQA1*05-05-DQB1*03:01 dhe DRB1*15:01-DQA1*01:02$\mathrm{DQB1}{ }^{*} 06: 02$), tē cilat konsiderohen haplotipe mbrojtēse, kanē rrisk mẽ të ulur pēr të zhvilluar SAT. $(\mathbf{4 7 0 , 4 8 1)}$) Ndër gjenet jo-HLA, polimorfizmat e tē cilēve janë identifikuar dhe konsiderohen predispozues pèr shfaqjen e DMT1 dhe SAT në fëmijët dhe adoleshentēt pērmēndim, antigieni citotoksik i lidhur me limfocitet T (CTLA4), proteina tirozinẻ fosfataze jo-receptor tip 22 (PTPN22), receptori interleukin-2 (IL2Ra), receptori i vitaminès D (VDR) dhe faktori tumor-nekrozë- α. (TNF, grupi i diferencimit 40 (CD40), kutine e kalimit P3 (FOXP3), sekuenca A e lidhur me polipeptidin e klasess I teß MHC (MICA), INS-VNTR, domenin e lektinẽs sé tipit C Pěmban 16A (CLEC16A), gjeni i tirozine kinase 3 e receptorit Etb-B2 (ERBB3), proteina 1 qee përmban domenin helikazè C tẽ induktuar nga interferoni (IFIHI) dhe gjene tē ndryshme tē citokinës, domeni BTB dhe homologu $2 \mathrm{CNC}(\mathrm{BACH} 2)$, recepton $5 i$ kimokinēs the motiv CC (CCR5), proteina pěrshtatẽse SH2B 3 (SH2B3) dhe GTPase 2 e vogël e familjes Rac (RAC2). SAT karaktenzohen nga veçori klinike, imunologike dhe histologjike tè ndryshme qé variojné nga hipotircidizmi nè hipertiroidizěm. SAT më shpesh shfaqen me shënja të hipotiroidizmit (tiroiditis Hashimoto subklinik dhe
klinik) dhe mẽ rralle tè hipertiroidizmit (morbus Graves cse tiroiditis Hashimoto nê fazēn hiperfunksionale),
Tiroiditi limfocitik kronik (tiroiditi Hashimoto). Dęmtimi autoimun nẽ tiroiditin Hashimoto ndan disa ngjashmèri me mekanizmat e shkatërrimit teٌ qelizave beta në DMT1 ndërmjetésuar nga qelizat T. Histologjikisht tiroiditi Hashimoto karakterizohet nga infiltrimi limfocitar (30% limfocite B dhe 60% limfocitet T' CD4+ helper dhe CD8+ supresore) 1 gièndrěs tiroide, apoptozè e qelizēs tiroide me shkatërrim tê folikulit sesa stimulim tẽ tiroides dhe hiperplazia qelizore. Antitrupat anti-TPO mè parê konsideroheshin jo-patogjen por tani roli i tyre ēshtë i njohur. Ato frenojnë aktivitetin e enzimes dhe stimulojné citotoksicitetin nga natyral killer. Tiroiditi Hashimoto nga pikpamja klinike klasifikchet në 2 foma: subklinike (kompesuar apo asimptomatik) dhe klinike (simptomatik). Shumica e pacientēve me SAT kanē sēnundje sublklinike.
Hipotiroidizmi klinik. Hipotiroidizmi klinik diagnostikchet në 4-18\% e pacientēve me DMT1 ($\mathbf{4 6 3}$) e cila është mẽ e lartē se në popullatën e përgjithshme ($5-10 \%$) ($\mathbf{4 5 2}$) Antitrupat antitiroid gjatē viteve të para té DMT1 (478) jané parashikues të fort për zhvillimin e hipotiroidzzmit, me njē raport rrisku afèrsisht 25 (477, 478). Manifestimet Klinike mund tę përfshijné prezencën e niè gushe simetrike tê padhimbshme, ndjenjeै presionit lokal ose vēshtirësi nè gëlltitje, ulje tê ritmit të rritjes, nervozitet, irritabilitet, agitim, intolerance ndaj te nxehtit dhe të ftohtit, shtim ne peshe, oftalmopati, çrregullime menstruale, vonesě ritje, statuř̀ e shkurtěr, konstipacion, humbje ase shtim nê peshẻ dhe djersitja, lodhje, letargji, dislipidemi dhe bradikardi. (482) Ekraminimi i kujdesshëm i qafès sẻ pacientit duhet tẻ jetê pjesê nẻ̉ çdo vizite klinike, dhe vlersimi i funksionit tě tiroides duhet tę běhet sipas indikacioneve specifike ose çdo vit. Hipotiroidizmi konfirmohet nga niveli i ulur i tiroksinés sé liré (FT4) dhe/ose FT3 the nivel i rritur i TSH. Hormonet e tiroides luajnë rol absorbimin e glukozës në intestin, glikogjenolizë dhe katabolizmin e insulinès né mélçi me efekt hiperglicemik, prandaj ndryshimet e vogla tē nivelit tē hormoneve të tiroides rrisin riskun për hipoglicemi. Hipoglicenia persistente e pashpjeguar apo episodet hipoglicemike rekurente mund të jenë një manifestim jo i dukshēm (483) dhe shënja prezantuese e hipotiroidizmit nē pacientët me diabet tip 1. (484) Episodet hipoglicemie rekurente janë rezultat i rnitjes sē ndjeshmërisē së insulinēs, ulje tē kērkesēs pēr insulin dhe ulja e ritmit tè prodhimit të glukozës në hepar.(348) Hipotiroidizmi i padiagnostikuar dhe i patrajtuar krahas episodeve hipoglicemike rekurente shoqěrohet edhe me çregullim te metaboliznuit tē lipideve dhe çrregullim tè rritjes.
Hipotiroidizmi subklinik (asimptomatik apo i kompesuar) për shkak të tiroidititi autoimun shfaqet afêrsisht nẻ 3-8\% e fëmijēve the adoleshentëve me DMT1, (478,482) me njé incidencé duke filluar nga 0.3-1.1 pér 100 pacient ne vit (478). Hipotiroidizmi subklinik eshté diagnozé biokimike dhe karakterizohet nga pérqendrim normal i FT4 dhe i larté i tirotropinés (TSH). Hipotiroidizmi subllinik, në veçanti kur vlerat e TSH
$\geq 10 \mu \mathrm{LU} / \mathrm{L}$, mund tê shoqęrohet me rrisk tê rritur per hipoglicemi simptomatike, ($\mathbf{4 8 3}$) ulje tē shpejtēsisé sê ritjes në giatësi, (485) grregullim tê profilit tê lipideve dhe sěmundjet kardiake aterosklerotike.(482) Megiithëse, ka te đhëna tregojne̊ se hipotiroza subklinike nuk ka ndikim mbi rritjen the kontrollin glicemik në fémijët me DMT1, (464, 477) fillimi i terapisé zēvêndessuese me levotiroksiné redukton rriskun e kętyre komplikacioneve.
Hipertiroidizmi pẽrshi morbus Graves ose tiroiditi Hashimoto nè fazesn hiperfunksionale (Hashitoksikoza) shfaqet rralle , $<1 \%$ nè fěmijèt dhe adoleshentett me DMT1 por më shpesh se në popullatēn e përgiithshme. (486) Karakteristikat klinike kryesore tę hipertiroidizmit jane humbje peshe pa humbje oreksi apo ushqyerje e regult, axhitim, takikardi, tremor, intolerancë ndaj të nxehtit, zmadhim i giEndrēs tiroide, shēnja okulare karakteristike. Hipertiroidizmi zakorisht identifikohet në t̄̄ njëjtën kohē me diagnostikimin e diabetit the dhe shoqērohet shumé me histari komplikacionesh akute të diabetit (ketoacidoze, hipoglicemi) dhe hipertension arterial. (486) Megjithēse nuk ndikon në kontrollin metabolik afatgjate dhe nevojat pēr insulin, vēshtirēsia e pashpjegueshme për të mbajtur kontrollin e glicemisë, me hiperglicemi persistente mund tę jetę nję̆ manifestim jo i dukshém i hipertiroidizmit. (486) Përkeqësimi i kontrollit metabolik ndodh scpse gijEndja hipertiroidike rrit metabolizmin organizmit dhe si ryjedhojê rrit nevojën pèr glakozé,(487) alteron metabolizmin e glukozěs duke nxitur glukoneogjenezẽn đhe glikogjenolizën, rit kapjen e glukozês nga muskujt, ul ndjeshmêrinẻ e insulinès, lipolizẽ.(488) Hiperglicemia ndodh sepse reduktohet T1/2 jetés plazmatike e insulinẻs per shkak tẻ rritjes sẻ ritmit te degradimit teß saj dhe çlirimit tę rritur tę prekusorěve biologjikisht inaktiv tè insulinẽs. Hipertiroidizmi konfiromohet nga niveli i ulur TSH, niveli i rritur i T4 dhe T3, nivel i rritur i antikorpeve anti- TPO dheiose Tg nē Hashitoksikose dhe autoantikorpet anti-receptorit tee TSH në sêmundjen Graves. Nuk ka konsensus përsa i perrket depistimit tê SAT ne pacientett me DMT1, veçanērisht në̈ ata asimptomatik. (12) ADA, për shkak tē prevalencēs së lartë tē SAT, rekomandon qü tè giithë fëmijët e sapodiagnostikuar me DMT1 duhet tē monitorohen regullisht duke matur aucantikorpet anti gjendrēs tiroide dhe tirotropinèn (TSH) afêr kohës së diagnozès the tè pērsēritet nq.se rethanat klinike sugjerojnë mundēsinē e sēmundjes sē tiroides. (489) Nēse rezultatet janē normal ekzaminimet duhet tē pērsēriten çdo $1-2$ vjet ose mē shpesh nëse shfaquen simptomat e SAT. (12, 488) Zakonisht autoantikorpet nuk janę té pranishěm nè momentine diagnozës por shfaqen vonē gaatē ecurisē sê sëmundjes. (454) Nësē auto-antitrupat anti-TPO dhe anti-Tg nuk janes prezent, depistimi i funksionit te giendrěs tiroide duhet tę běhet çdo 12 muaj dhe nêse janê prezent duhet vlersim nê intervale mẻ̉ tę shkurtra, pas 6 muajsh (474) (451) Disa autore sugjerojne perdorimine anti-TPO si test depistimi primar,
TSH éshtê testi mê i dobishêm depistues dhe duhet vlersohet disa javé pas diagnozěs sê DMT1, sapo té jetê nomalizuar kontrolli metabolik. Kjo sepse, reth. 20% e
pacientēve nề momentin e diagnostikimit tê DMTlpērr herê tê parê, kanê anomali trankitore të funksionit të tircides i cili pëmirësohet me normalizimin e metabolizmit, $(490,491)$ Ne fêmjęt e sapo diagnostikuar me DMT1 kur ka dyshim klinik pẽrr hipoose hipertiroidizěm, ekzaminimet laboratorike duhet tę kryhen mé shpejt, brenda pak ditēsh sapotè perrmiressohen simptomat fillestare tè diabetit. Matja e TSH rekomandohet çdo njé deri ně dy vjet nẽse niveli éshtẽ normal. Ne pacientēt qẽ rezultojnẽ me TSH tě mitur ose prani e tiromegalisë ose shẽnjave dhe simptomave te hipotiroidizmit indikohet matja e FT4 dhe autoantikorpeve anti-Tg dhe anti-TPO. (12)
Nēse dyshohet sëmundja e Graves, atēherë duhet të maten niveli i antitrupat që lidhen ně receptorin e tirotropinès (TR-Ab). Pürsěritja e testimit tě antitrupave nuk ẻshtě e nevojshme kur ata rezultojnë pozitiv. Gjithashtu, gjēndra tiroide duhet te ekzaminohet me ekografi të paktēn një herë në vit nēsc identifikohen autantitrupa ose diagnostikohet tiromegali.(492) Diagnoza dhe trajtimi në kohē dhe i përshtatshem i SAT është pa dyshim i rēndēsishēm pēr mirēqërien e pacientit. Trajtimi i SAT nẽ fénijēt me DMT1 është i njëjtë si nê popullatën e pērgiithshme. Pacientët me nivele të larta të TSH apo hipotiroidizëm duhet tē trajtohen me terapi zēvendësuese Levotiroxinë (T4) nē dozē për tę mbajtur TSH nè nivel normal. Trajtimi redukton tiromegaline por nuk ka efekt mbi titrin e autoantikorpeve. (493)
Hipertircidizmi trajtohet me medikamente antitiroidien (methimazol, carbimazol ose propiltiouracil) dhe betabllokues. (494) Betabllokuesit si propranolol ndihmojne neß fazên akute té tirotoksikozès pèr tẻ kontrolluar takikardinê dhe axhitimin. Nẽ rast hipertiroidizmi persistent opsionet e trajtimit jane kirurgjia dhe jod radioaktiv. (495)

1.11.2 Sëmundja Celiake

Sërmundja celiake (SC) ēshtë nje sēnuudje autoimune kronike, sistemike poligjenike e traktit digjestiv që shfaqet nẽ personat gienetikisht teٌ predispozuar qẽ rezulton né paaftēsi për të toleruar gliadinēr, fraksioni i tretshëm nē alkool i proteinēs sē gluterit qē ndodhet nē drithrat si gruri, thekēra dhe elbi, SC éshtë sēmundje mjaft e shpeshtë në fëmijët, prevalenca e saj ështē rritur ndjeshëm duke u bërē një shqetësim global i shēndetit publik. Zbulimì i markuesve tē rinj serologjik mē sensitiv dhe specifik (fillimisht antikorpet anti-gliadin dhe anti-retikulin dhe më pas antikorpet antiendomiscal dhe anti-transglutaminazë indore) ka bërë tē mundur diagnostikimin në mënyré tę pavarur nga prezantimi klinik Nasik. Falẻ kętyre markuesve serologjik, SC identifikohct në një pjesē të madhe tê fémijēve, adoleshentëve dhe adultēve tê cilët më pare mak diagnostikoheshin apo diagnostikoheshin klinikisht jo korrekt. Incidenca dhe prevalenca e DMT1 dhe SC esshtẽ mjafte larshmishme kudo né botẽ, (496) dhe po rritet me hapa tes shpejtę. (497) SC diagnostikohet nê $1-5,5 \%$ e popullatès pediatrike, the incidencé mê tě ulět nẽ Japoni dhe mè lartě nẽ popullatěn Saharane. (498) Pas tiroiditit autoimun, SC ēshtê sěmundja autoimune mẽ e shpeshtẽ qě shfaqet nẻ fèmijēt me DMT1
me incidence $1.6-16,4 \%(499,500)$ dhe prevalences mesatare 8% ($\mathbf{5 0 1} \mathbf{5 0 3}$) Shoqérimi midis SC dhe DMT1 është përshkruar për herē të parë nē vitet 1960 (504) Prevalenca e SC nè fèmijēt dhe adoleshentët me DMT1 stshtẻ 10-20 fish mê e larte krahasuar me 0.5% nẽ popullsiné e përgithshme pediatrike. (505-509) Ne 90% e pacientěve, SC
 dhe vetěm në 10% tê rasteve i paraprin shfaqjes se diabetit. $(510,511)$ Fémijèt dhe adoleshentët e diagnostikuar me DMT1, antitrupat e SC nê 62% dhe 79% te rasteve shfaqin brenda 2 dhe 5 viteve te para te fillimit te diabetit, respektivisht (512) dhe mé mallē pas kēsaj periudhe.($\mathbf{5 0 6}, \mathbf{5 0 9}$) Faktorët rrisk predispozues të zhvillimit tē SC në pacientęt me DMT1 janẻ tê ndryshme nga ato tě DMT1. (513-516) Faktorèt rrisk predispozues të zhvillimit tè SC janê praktikat e ushquerjes në infantët, ushqyerja me gï, gimia femërore, mosha e vogēl e diagnozës dhe kohēzajatja e DMT1, koha e ekspozinit ndaj drithërave, kohēzgjatja e ekspozimit ndaj glutenit, bashkë-ekzistenca e sëmundjes autoimune e firoides, $(\mathbf{5 1 7}, \mathbf{5 1 8})$ infeksionet virale në moshē tē vogël, ($\mathbf{5 1 3 , 5 1 9}, 520)$ mikrobioma e zorrés, mbartja e karakteristikave gjenotipike specifike të një̆jta me DMT1, (521) SC nĕ fèmijēt mê DMT1 éshtē më e shpcshtë nē gjininë femèrore (në̀ raport 2-3:1), nè fèmijĕt qè ekspozohen herest (<3 muajsh) ose voné (>7 muajsh) ndaj dritherave ($\mathbf{5 5}, 57,522$) në fémijèेt q仑̈ diagnostikohen me DMT1 < 5 vjeç, (499, 508, 509, 517) rracẽn kaukaziane, nē fèmijĕt qẻ̉ kalojnē inféksione virale gatę fèmijërises, vecanesrisht nga rotavirus, $(\mathbf{5 2 3})$ enteroviruset $(\mathbf{4 9 2}, 524)$ dhe fèmijēt me haplotipet HLA-DR3-DQ2 dhe DR4-DQ8, $(\mathbf{5 2 5}, 526)$ Ushqyerja me gji sidomos kur ështẽ i zgjatur èshtè faktor mbrojtès për tè dy sêmundjet, megithe̊se tẽ dhěnat e studime tè ndryshme jané mikse. ($\mathbf{5 2 7 , 5 2 8}$) Mikrobioma e intestinit (baktere) e cila ndikon ně nutricionin_parandalon kolonizimin nga patogjenet dhe ndërvepron me rregullimin dhe pērgigien imune të hostit mendohet si faktor risku nè shfaqjen e SC dhe DMT1.(529) SC dhe DMT1 ndajnè një numèr faktorẻsh gienetik predispozues tę pèrbashkẻt tè cilat shfaqen pas ndërveprimit me faktorë mjedisor. Predispozita gjenetike e shfaqjes sê SC nē fërnijēt me DMT1 pērcaktohet nga polimorfizmat e gjeneve tè pērbashkët HLA dhe jo-HLA. (521) Haplotipet HLA-DR3-DQ2 the DR4-DQ8 mbartin miksun më të lartë ndërsa alelet DQB1*06:02 huajnè rol mbrojtës. $(\mathbf{5 2 5}, 526$) Haplotipi HLA-DQ2 (i njohur edhe si haplotipi HLA-DR3/DQ2) ështe haplotipi më prevalent në pacientët me SC dhe DMT1, i cili identifikohet né 90% e pacientëve me SC dhe 55% e atyre me DMT1 krahasuar me 20\% tẻ popullatés seé pergjithshme. (530) HL.A-DQ2 homozigot mbart miskun më të lartē për SC. (531) Haplotipí HLA-DQ8 konsiderohet njē faktor shumë i forte predispozues pér T1DM, vecanérisht DQ8 heterozigot (532,533) gjendet nè 70% e pacientëve me TID (534) dhe nê 10\% pacientëve me SC. Ndêr gienet jo-HLA qe shoqêrohen me SC dhe DMT1 përmèndim; CCR5, IL2, IL21, BACH2, 35. PIKFB3, PRKCQ SH2B3, ATXN2 SH2B3, UBASH3A, CD26, CTLA4, ICOS, PTPN2, (535) RGS1, ILI8RAP, TAGAP dhe PT'PN2, (521) Historia natyrale e SC ne pacientert me

DMT1 éshtê miafte larmishme nga forma asimptomatike (SC e heshtur) (40\%), (536) simptoma të Iehta qē diagnostikohet falē proçedurave depistuese në sēmundshmēri të shprehur ($<10 \%$) me simptoma gastro-intestinale. (506)
Nê měnyrẻ klasike SC klinikisht ndahet ně silent, potential, latente dhe klasike (537) por nẻ individst me diabet, simptomat e SC ndahen nẻ dy kategori kryesore; tẻ lidhura direkt me SC dhe te lidhura me ndikimin e SC mbi diabetin. Manifestimet e lidhura me ndikimin e SC mbi DMT1 (sěmundje tè dyfishté) në fèmijęt e padiagnostikuar dhe tê patrajtuar jànẽ; dëmtim i shpejtẻsisé sẽ rritjes në giatësi dhe mos shitim nẽ peshẻ, (508 , 538) indeks mase trupore të ulèt, (BMD) (539) kontroll jo i mirë i glicemisē me episodet hipoglicemike simptomatike té shpeshta tẽ pashpjegueshme për shikak tę malabsorbimit tê karbohidrateve; (540) nivele mẽ të ulēta tē HbAlc krahasuar nga ata vetëm me DMT1; $(\mathbf{5 4 1}, \mathbf{5 4 2})$ misk jo tē rritur pēr episode KAD; (508) pakēsim progresiv të nevojave për insulinë, (543) reduktim tē mineralizimitë kockës, osteoporozë dhe rakit nga malabsorbimi kronik i vit D dhe kalciumit. (544) Diagnoza e SC në pacientēt me DMT1 bazohet né protokollet depistuese tē cilat konsistojnë në matjen e antitrupave specifik dhe konfirmim me anē tē biopsisē sê intestinit. Testet depistuese me specifitet đhe sensivitet tę lartě t厄̃ rekomanduara nga shumica e udhězuesve janê antitransglutaminazē indore IgA (TTG IgA) (konfirmuar nga EMA), anti-transglutaminazë indore $\operatorname{Ig} G$ (TTG IgG né pacientēt me deficit $\lg A$), anti-endomiseal (EMA) IgA, the antikorpet IgA anti IgG peptidit gliadin deaminuar (DGP). (283, 545) Antitrupat IgA ani TTG dhe / ose EMA kané sensivitet dhe specifitet $>90 \%$.(546) Meqěnëse këto teste bazohen nè antitrupat e imunoglobuliněs A (IgA), the për shkak tê incidencës mè teß lartê tę deficitit tẻ IgA nẽ pacientêt me $\mathrm{SC}(1.7 \%)$ sesa ne̊ popullatẽn e pęrgithshme (0.25% ose 1.500) udhäzimet rekomandojnes matjen rutin të IgA totale serike perr tę pērjashtuar deficitin e IgA gjatē proçesit tê depistimit. (452,547) Antitrupat anti-gliadin nuk rekomandohen për depistim pasi kanè sensitivitet the specificitet mê tê ulèt se EMA dhe TTG. (548) Tē giithē pacientët me DMT1 duhet tè depistohen për SC për shkak të prevalencès sē rritur dhe ndikinuit klinik tē rēndēsishēm mbi DMT1.(489) Rekomandimet pēr depistimin SC në pacientēt me DMT1 nuk janë uuforme dhe nuk ka konsensus përsa i përket, testeve depistuese tè rekomanduar dhe shpeshtēsisē së depistimit (549)

1. Shoqata Amerikane e Diabeteve (ADA) 2014, rekomandon përcaktimin e ATG ose EMA tex klasěs \lg A menjecherè pas diagnostikimit të diabetit dhe petrjashtimite deficitit të $\operatorname{Ig} A$. (550)
2. Shoqata Ndërkombëtare e Diabetit Pediatrik dhe Adoleshent (ISPAD) rekomandon pęrcaktimin e TTG dhe EMA tê klasęs IgA nê kohẻn e diagnostikimit tex sëmundjes dhe colo vit gjatè pesé viteve tê para të sëmundjes dhe mé pas cdo 2 vjet. $(\mathbf{5 5 1}, \mathbf{5 5 2})$
3. Shoqata Evropiane për Gastroenterologi Pediatrike, Hepatologi dhe

Ushqyerje (ESPEGHAN), rekomandon se biopsia e intestinit mund tẻ shumanget nêse janë të pranishme shënjat dhe simptonat tipike tē SC, praninë e autoantitrupave specifikè, veçanërisht njé nivel i lartę tê TTG IgA >10-fish mê i larte se kufini i siperm dhe EMA positive the gienotip specifik (HLA$\mathrm{DQ2} / \mathrm{DQ8}$). Rẽnia e titrit tê antitrupave dhe pērgigja Ninnike ndaj dietês pa glutenkonfirmojnẻ diagnozẻn. ESPGHAN rekomandon depistim teٌ antikorpeve neٌ diagnozể dhe mé pas edo 2-3 vjet.(553) Testimi pěr HLA DQ2 / DQ8 pẻr te̛ pêrcaktuar predispozitën gjenetike ndaj sěrmindjes celiac zakonisht nuk êshtẽ i dobishēm, sepse një pjesē e madhe e individēve me T1DM mbartin edhe këto alele rrisku, kęshtu që̆ njé rezultat pozitiv nuk jep informacion.
4. Kolegi Amerikan i Gastroenterologisë (ACG) rekomandon që testimi i antitrupave, veçanërisht antitrupat imunoglobulina A anti transglutanuinazë̈ indore (lgA TTG), êshtë testi i parë më i mirë për sëmundjen e dyshuar celiake, megjithēse duhen biopsi pēr konfimmim; tek fémijët mē tè vegjël se 2 vjec, testi IgA TTG duhet tee kombinohet me testimin pēr peptidet gliadinike tê deamiduara nga IgG. (554)

Të gjithë fèmijēt me me DMT1 rekomandohet të depistohen menjëherē pas diagnozës sẻ DMTl për herê teٌ parě, çdo vit pèr 4 vitet e para dhe më pas çdo 2 vjet pĕt 6 vitet e ardhshẽm. (553, 555) Nęse testi i depistimit eshtê negativ, pacientêt duhet tę ridepistohen pěr SC çdo dy vjet. Negqoftêse femija demonstron rritje jo tê mirê ose humbje peshe, ose shfaq simptoma qee sugjerojne SC testimi duhet tẻ merret me herest. Pacientët qü rezultojne̊ me antikorpe pozitiv duhet tê referohet tek gastroenterologu pediatrik për biopsi intestinale (të paktèn 5 biopsi nẻ duoden), e cila konsiderohet standarti i arté për tè konfirmuar diagnozēn $(\mathbf{5 5 3}, 556)$ Karakteristikat histologiike të biopsisë jane sheshimi i vileve, atrofi e vileve, hiperplazi e kripteve, limfocitoze intraepiteliale e rritur.(557) Përsēnitja e testeve dhe biopsisē për të diagnostikuar pērfundimisht SC-nē pērpara fillimit të dietès pa gluten (DPG) indikohet nē pacientēt me DMT1 pa sherja dhe simptoma tipike, nē ata që kanē antikorpe pozitive <3 herë më i lartë se kufiri i sipërm i normēs ndonēse janē ende në dietē me gluten sepse ështē i mundur normalizimi spontan ndērsa ēshtē ende në diet me gluten. (558) Menjëherē sapo të dhënat serologiike the histologijike konfirmojnë SC, pacienti referohet te gastroenterologu pediatèr, kur ěshtę e mundur dietolog pediatēr me përvojê pẽr tẽ marrê edukim dhe materiale edukative né lidhje me DPG,e cila kërkon shmangien e grunt, thekrěs, elbit dhe těrshêrës gjithe jetěn. (642) Trajtimi i pacientëve me sëmundje tẻ dyfishtë ęshtë si pèr té giithë pacientett me SC. DPG rekomandohet si nè pacientêt me simptoma klasike ashtu edhe nẻ ata subklinik. (546) DPG shoq̧ęrohet me pęrmirèsimin e pacientēve me DMT1, (559) pakęsim tê simptomave gastrointestinale, pẽrmirẻsim tê malabsorbimit, te kontrollit metabolik (glicemik), pakèsim te episodeve tê
hipoglicemisè sể rěndè dhe mitje tê kêrkesěs për insulin, (560) pêrmirèsim tê mitjes dhe shtimit në peshë̀ dhe BMI, pēr mirēsim tē densitetit mineral kockor (BMD, (561) ul miskun e malinjitetit gastrointestinal té mezvonshẻm dhe mortaliteti(562) edhe normalizimin e ferritinés serike dhe hemoglobiness, $(559,561)$ normalizimin e autoantitrupave (563) dhe përmirësimi cilësisẻ sẻ jetěs. (564)

1.11.3 Sēmundja Addison (insuficenca surenale primare)

Sëmundja Addison (SA) u përshkrua pēr herê të pare nẻ 1849 nga Thomas Addison. SA është një sëmundje autoimune jetë-kērcēnnese, kronike, gjenetikisht e predispozıar, qē shfaqet ne fermijet the adoleshentet me DMT1 the mé ralle nee ata me SAT the SC. SA është sëmundje jo e zakonshme, me incidencë $90-140$ pēr milion (565) Në pērgjithësi, SAi paraprin shfaqies së DMT1 tek fémijēt dhe adoleshentēt (566) dhe incidenca e DMT1 né pacientëte diagnostikuar mē parē me SA është 10-18\%. (454) Antikorpet qarkulluese anti-21-hidroksilazäs shfaqen né reth $1.6-2.3 \%$ e individēve me DMT1 (458, 567,568) por vetën < 1% (1 nė 200-300) prcgresojnë drejt shfaqjes see manifestimeve klinike tē insuficencës adrenokortikale. (4) Né pacientët me SA që krahas DMT1 kanẽ sëmundje autcimune tjetèr (psh. tiroiditis), misku rritet ne I ne 30 pacientë
Markuesit autoimun të SA janë sutoantikorpet anti korteksit surenal (antitrupa ndaj qelizave surenale, (ACA) dhe/ose anti 21-hidroksilazess (antitrupa anti 21OHAb), (565) Autoantigieni kryesor sushte enzima mikrosomale e citokromit P450 21-hidroksilaza, e cila konverton alfa-progesteronin dhe progesteronin nô 11 -deoksikortizol dhe 11deoksikortikosteron $(\mathbf{5 6 9}, 570)$
Faktoré misk nẻ shfaqjen e SA né pacientēt me DMT1 mendohet se lidhet me seksin femêr, moshěn ně tẽ cilèn diabeti esshté diagnostikuar apo kohërgjatjene diabetit, prania e sêrnundjeve autoimune të tjera, nê veçanti SAT, (471) histon familjare pozitive për sěmundje autoimune. (570-572)
DMT1 dhe SA ndajnë karakteristika gjenetike tē përbashkēta, kryesisht tē shoqëruar me haplotipin HLA DR3. Haplotipet me rrisk mé të lartë, tē cilët takohen me shpesh në individët me sēmundje të dyfishtē janē HLA DRB1 * 04-DQB1 * 0302 (kryesisht DRB1 * 0404) the DRB1 * 0301-DQB1 * 0201 (DR3/4, DQ2/DQ8 dhe DRB1*0404/DQ8-DRB1*0301/DQ2). (572,573) Nga pikpamja klinike SA mund tē shfaget si patologii e izoluar ose e bashkēshoqëruar me sémundje tê tjera autoimine endokrine the jo endoknine që njihen me emrin Sindroma Poliendokrine Autoimune (APS-1 dhe APS-2).(566,574) Individët që̀ zhvillojnē antitrupa ndaj enzimēs 21hidroksilazẻ humbasin pérfundimisht aftesinè për tę prodhuar glukokortikoide, mineralokortikoide dhe androgjene shoqẽruar me sekretim tê ritur tẽ ACTH nga gjëndra e hipofizěs dhe rritje tê aktivitetit tè reninẽs plazmatike (575) Ende ka pak tę dhěna nêse pacientět me DMT1 duhet teٌ depistohen regullisht për ACA sepse rriska dhe periudha e zhvillimit tê autoimunitetit adrenal nê pacientět me DMT I nuk êshtẻ e
parashikueshme. (593) Insuficenca surenale nè fèmijèt dhe adoleshentet intalohet mé shpejt se në adultët (576) prandaj rekomandohet depistime periodike në tē gjithē pacientēt e vegiēl tę diagnostikuar me diabet tip 1, pêr tê identifikuar pacientēt asimptomatik me antikorpe surenal pozitiv. (577) Něqoftěse autoantikorpet janẽ tê pranishěm, pacientett duhet tę monitorchen çdo vit me test stimulimi me ACTH pẻr të siguruar diagnozé tê hershme dhe parandaluar krizẽn surenale. (577) Gjithashtu, pêrcaktimi i ACA rekomandohet nê pacientēt me DMT1 mbi 18 vjeç nê prani tê simptomave Klinike té autoimunitetit adrenal ose çdo 5 vjet nëse ata me histori sëmundje nè të afërmit e shkallēs së parë. ($\mathbf{5 9 5}, 578$) Nevojitet njè shkallē të lartë dyshimi pěr njě diagnozě tę hershme tẻ sěmundjes Addison. Episodet e pérséritura teٌ pashpjegueshme tē hipoglicemisē në pacientèt me T1DM duhet të nxisin mjekun për praninë c ruundshme tē sëmundjes Addison. (579) Episodct hipoglicernike të shpeshta lidhenme deficitin e kortizolit, mitjen e ndjeshmënsë sē insulinēsnë indet target, rritjen eglikolizës dhe uljen e glikogienezēs dhe glukoneogienezës por nuk duhet harruar edhe një hipotiroidizëm i mundshēm shoqërues i pađagnostikuar. (566) Pacientēt me DMT1 dhe SA kanc̄ nevoja të ulura pḕr insulinē. (592)
SA nes diabetin tip 1 mund té dyshohet bazuar nẻ simptomat klinike aspecifike dhe tipike të insuficences adrenokortikale. Sëmundja \& Addison paraprihet nga njē pcriudhë e gjatẻ prodromike, asimptomatike. Simptomat kryesore janẽ te vjellat e vazhdueshme, nauze, ulje oreksi, anoreksi, episode hipoglicemie tẽ shpeshta, humbja e pashpjegueshme e peshẽs, lodhje, pafuqi, dobẻsi tê përgithshme (pèr shkak tê hipotensionit ortostatik the hipoglicemi rekurente té pashpjegueshme), dobesi muskulore, dさ̌shires pêr tê konsumuar ushqime tê kripura, hipotension, hiperpigmentim i lekures the i siperfaqeve mukozale dhe ulje e pa shpjeguar e kërkests perr insulin. (592) Hiperpigmentimii i lëkurēs dhe i sipërfaqeve mukozale ēshtē shenja më specifike e insuficiencẻs adrenale parésore, si pasojè e përqendrimeve plazmatike té larta të aktivitetit stinulues të melanociteve tē β-lipotropinës, me origjinë nga i njèjti prekusor si ACTH. (570) Testet laboratorike që ndihmojnè diagnozēn janā: hipoglicemia, hiponatriemia, hiperkaliemia, acidoza metabolike, nivelet e larta tē ACTH, niveli i ulur i kortizolit bazal dhe pas testit tē stimulimit me ACTH. Niveli i mritur i ACTH, sugjeron praninë e insuficencés surenale. Trajtimi i SA konsiston nē kortikoterapi gjatë gjithë jetës dhe pèrshtatje të dozës nee situata stresi dhe para procedurave kirurgiikale dhe në disa raste mund tè jeté e nevojshme sublementi me mineralkortikoid si fludrocortisone dhe pas adoleshencës androgjene. (565)

1.11.4 Vitiligo

Vitiligo êshte̊ nje diskolorim i kufizuar i lekurès (pika tê barcha) ose leukoderma, i fituar i cili ndoch nga humbja e qelizave melanocite tê epidermës. (580) Vitiligo eैshtê njè patologii autoimune e shpeshtẽ nẻ pacientęt me DMTI krahasuat popullatén e
pergjithshme $(0.5 \%-1 \%)(\mathbf{5 8 1})$ dhe $>50 \%$ e rasteve diagnostikohen pérpara moshès 20 vjeq. (582) Afersisht 1-7\% e pacientëve me DMTI shfaqin vitiligo the $16-20 \%$ pacientęt tę diagnostikuar fillimisht me vitiligo shfaqin gjatê ecurisę DMT1. (583) Etiopatogjeneza e sěmundjes mendohet se lidhet me faktore gjenetik dhe mjedisoré. Rrisku gjenetik madhor i vitiligos sshted i lidhur me polimorfizmin né gjenet HLA-A, HLA-DRB1/DQA1, (584-586) gjenin ATXN2. (587) Shumica e pacientëve kanë teٌ pranishme qeliza T-reaktive dhe autoantikorpe anti-melanocite($\mathbf{5 8 2}, \mathbf{5 8 8}$) Vitiligo ndërmjetësohet nga pérgigja Th1 (CD4+) ndęrsa shkatērrimi i melanociteve ndërmjetësohet nga qelizat T CD8 citotoksike (rritje e raportit CD8:CD4).(589) Mekanizmat e mundshěm tę vitiligos janě démtim neural, brokimik dhe autoimun i melanociteve $(\mathbf{5 8 2}, \mathbf{5 8 8})$ Vitiligo shpesh shfaqet e shoqēruar me sēmundje autoimune tę tjera. ($\mathbf{4 5 1 , 4 5 2}$) Sindromi poliglandular autoimun tipi 2 (PAS-2) shumë e shpeshtë né pacientèt me DMT1(451), shpesh shfaqet nē të njējtēn kohē me vitiligon. (590) Shfaqja e vitiligos në pacientët me T1DM rit miskun e shfaqies së sëmundjeve të tjera autoimune, veçanērisht SAT dhe gastritis. (451, 455) Gjithashtu, është vērejuur një lidhje pozitive midis pranisē së antitrupave dhe gravitetit tê sc̄mundjes (mitja c incidencess tek pacientèt me zona mê tê mèdha tê lêkurès sê prekur). Pavarèsisht pērdorimit tē trajtimeve të shumta tē vitiligos, fatkeq̧ësisht, ato nuk janë efektive.(591) Trajtimi kortikcoteroide topike, derivate të vitaminës-D, frenues tè kalcinurinés, fotokimoterapi (psoralen plus UV-A (PUVA), psoralen me rrezet e diellit (PUVAsol)), fototerapi (UV-A, UV-B me bande tê ngushtě) dhe kirurgiikale teknikat. (591-597) Neै vitiligo te̊ lokalizuar, trajtimi me kortikosteroid topik mund tê jene efektive. Pacientest kěshillohen tě shmangin diellin dhe tę përdorin kremrat e diellit me spektęr teٌ gjeré. Meqê mungesa e vitaminès D ęshtẽ e zakonshme tek njerëzit me vitiligo, duhet teß merret nē konsideratë matja e niveleve te 25 -hidroksivitaminës D the dhe marrja e sublementit tě vit D_{3} ($\mathbf{(5 9 8}$)

1.11.5 Gastriti autoimun (GA) dhe anemia pernicioze

Gastriti autoimun dhe anemia pernicioze takohet 5-10\% në fèmijēt dhe adoleshentèt me DMT1. (451,452) Antikorpet ndaj qelizave parietale (PCA) dhe produkti seketcr i tyre faktori intrisek (AIF) janē markuesit serologijk të gastritit autoimun të cilët drejtohen kundër autoantigjenit madhor ATPase natrio-potasike (pompa protonike) tè qelizave parietale gastrike. Një tjetēr markues i hershèm i gastritit autoimun đhe anemisě pernicioze êshtë niveli i ulur i pepsinogjenit I , si pasojë e shkatërrimit tē qclizave kryesore. Prevalenca e antikorpeve ndaj qelizave parietale (PCA) mitet me moshěn dhe kohëzgjatjen é sěmundjes. Kjo e běn tê nevojshme depistimin e rregullt për kēto patologii, tê paktënn njề gjak komplet. (452) Shpeshtêsia e PCA nẻ fêmijêt me DMT1 dhe mě e lartẻ se ně popullatẽn e përgjithshme (1.9%). Gastriti autoimun eैshtë mé i shpeshtê në adoleshentêt me SAT. GA karakterizohet nga atrofia e korpusit dhe
fundusit gastrik. Autoagresioni kronik i PCA ndaj pompess protonike si pasojê e dèntimit tē sekretimit gastrik manifestohet me hipoklorhidri, aklorhidri, hipergastrinemi dhe anemi hipokromike mikrocitare ferro-deficitare nga démtimi i absorbimit tę hekurit dhe si pasojé e defiçitit té faktorit intrisek shfaq anemi makrocitare pernicioze si pasojè e deficitit te absorbimit t\& vit B12. PCA dhe AIF izolohen jo vetëm në serum por edhe nẻl lëngun gastrik. Titri i PCA shoqęrohet nê měrlyré pozitive me me gravitetin e atrofisê gastrike dhe negativisht me me pêrqēndrimin e qelizave parietale. Anemia pemicicze dhe gastriti autoimun mund te predispozojne drejt kancent gastrik. Infeksioni nga Helicobacter pilcri konsiderohet faktor rrisk pèr gastritin autoimun duke stimuluar gramulocitet pêr tę prodhuar radikale tê lira tę cilat janě mutagjenike dhe cojnë nē atrofi tê korpusit. (599) Nē fémijēt me DMT1 qē shfaqin anemi pernicioze është parë nuë lidhje e dobët midis pozitivitctit tê PCA dhe haplotipit HLA-DQA1*0501B1*0301, i lidhur me HLA-DR5. (600) Diagnoza e AG kērkon gastroskopi me të paktēn dy biopsi nga antrumi gastrik dhe trupi gastrik.

1.11.6 Sindromi Autoimun Poliglandular (SAP)

DMT1 mund tẻ jetè nję komponent i Sindromave Autoimune Poliglandulare (SAP), njeç grup heterogjen sēmundjesh të rralla të përcaktuara si çrregullime funksionale i tê paktēn dy gièndrave endokrine dhe ndoshta i organeve tê tjera. SAP ndodhin ně individe të predispoznar gienetikisht pas aktivizimit te njė faktori qee shpérthen njé pergiigje imune jonormale. Klasifikimi i pare u propozua nga Neufeld dhe Blizzard né 1980.(601) Bazuar nề moohěn e pacientit kur shfaqet, prezantimi klinik, komponenti gienetik apo tipizimi HLA, shoqērimi klinik me endokrinopati specifike sindromat autoimune poliglandulare (SAP) klasifikohet ně tre tipe kryesore. (602) Endokrinopatitë individuale mund të zhvillohen në periudha te ndryshme dhe simptomat e tyre paraprihen nga prania e autoantitrupave specifikë në serum. Incidenca e diabetit të tipit 1 në sindromat ēshte 4-18\% nē SAP-1, 60% në SAP-2 dhe 14,5\% në SAP-3. DMT1 shfaqet mê shpesh në pacientēt me SAP-1 dhe SAP-2. Megithēse manifestimet klimike të sēmundjes zakcnisht shfaqen nē dekadēn e tretē tê jetēs, simptomat e para mund tē shfaqen nē fémijēri. Prandaj, çdo pediatēr duhet tê njohë simptomat e SAP, veçanërisht nē lidhje me sēmundjet e shumta autoimune shoqēruese $q \bar{c}$ shoqërojnce diabetin e tipit $1 .(603,604)$

1.11.7 Sindromi IPEX

Sindromi IPEX ēshtẻ nié çrregullim i rralle dhe karakterizohet nga deficiti i tëndé i imunitetit, poliendokrinopati dhe enteropati me shfaqie te vonshme i lidhur me X . Sindromi shkaktohet nga mutacioni nĕ gienin forkhead box P3 (FOX-P3), i cili kodon nje faktor transkiptimi thelbesor per zhvillimin dhe funksionin e qelizave T
regullatore. (605, 606) Si rezultat i kétij mutacioni dèmtohet funksioni normal i qelizave T rregullatore. Sindromi manifestohet zakonisht nē muajët e parë të jetës, në fêmijërinê e hershme dhe karakterizohet nga diarrea, dermatiti dhe DMT1. Gjithashtu jane identifikuar sindroma tëngjashme me IPEX të lidhura me mutacione me humbje te fanksionit nè CD25, STAT5b dhe ITCH dhe mutacione me rritje tè funksionit neै STAT1 (607)

1.11.8 Necrobiosis lipoidica diabeticorum

Necrobiosis lipoicica ēshtë sëmundjes autoimune e shpeshtë e cila prek $1-2 \%$ e fèmijëve me DMT1 dhe mund te jenë̉ mé e zakonshme né femijërme kontroll jo tê mire tē diabetit $(608,609)$ Etiologiia nuk ështē e njohur mirē por mikroangiopatia mendohet se luan rjë fol tê rẽndẽsishěm. (609) Karakterizohet nga lezione hiperemike, tę ngritura mbi lëkurë dhe me kufijē të qartë tè cilat ndonjēherë progresojnē̈ në ulcerimeve centrale, zakonisht shihen nē regjonin pretibial.

KAPITULLI II. QËLLIMI DHE OBJEKTIVAT E STUDIMII

2.1 QËLLIMI I STUDIMIT

Qëllimi i këtij studimi është tẻ pērshknuhen karateristikat epidemiologiike, klinike, imunologiike dhe sẻmundjet autoimune shoqęruese tẽ diabet mellitus tip 1 tẽ diagnostikuar pēr herë të parë në fëmijët <15 vjeç gjatē peniudhës 2010-2014 në Shquipëri. Përveç qẻllimit kryesor te këtij punimi, gjeţjet tona do tē mbështesin fushatat sensibilizuese, ndërgjegiësuese dhe edukuese të prindërve me qëllim njohjen e shenjave tè harshme té DMT 1 dhe ketoacidozēs diabetike.

2.2 OBJEKTIVAT E STUDIMIT

2.2.1 Objektivi i përgjithshëm 1

- Të perrcaktohen karakteristikat e përgjithshme të fémijęve me DMT1 te përfshirè nẽ studim.

2.2.1.1 Objektivat specifikë për objektivin e përgiithshëm 1

- Të pērcaktchet shpërndarja e pacientēve pediatrik me DMT1 sipas moshës nē momentin e diagnozës, giinise dhe vendbanimit.
- Të pẽrcaktchet shpërndarja e pacientēve pediatrikê me DMT1 sipas dyshimit pēr diabet nē momentin e shtrimit dhe diagnozès pārfundimtare të tyre.
- Tę pěrcaktohet shpërndarja e pacientêve pediatrikè me DMT1 sipas llojit tê DMT1 (me ose pa KAD).
- Të pērcaktchet shpërndarja e pacientēve pediatrikë me DMT1 sipas sezonit tē lindjes dhe sezonit te diagnozěs sé DMTI.
- Të pērcaltohet shpërndarja e pacientēve pediatrikë me DMT1 sipas statusit tẻ historisë familjare për DMT1 dhe tē afermit të prekur nga DMT1.

2.2.2 Objektivi i përgjithshëm 2

- Të pārcaktohen karakteristikat e tjera të fēnijēve me DMT1 të përfshirë në studim.

2.2.2.1 Objektivat specifikë për objektivin e përgjithshëm 2

- Të pėrcaktohet prania e infeksioneve virale, stresit psiko-social, aplikimi i vaksinave midis fëmijëve me DMT1 tē përfshirë nē studim.
- Të pércaktohet koha midis shfaqjes sē simptomave dhe vendoojes së diagnozēs sẻ DMT1 midis fërnijēve me DMT1 të pērfshirē në studim.
- Të përshkruhet shpëndarja e fëmijëve me DMT1 sipas kohës midis shfaqjes
se simptomave dhe diagnozets se DMT1.

2.2.3 Objektivi i përgjithshëm 3

- Të pērcaktohet shpërndarja e disa karakteristikave tê fëmijëve me DMT1 tẻ përfshirè ne̊ studim sipas gjinisẻ dhe moshës sé tyre.

2.2.3.1 Objektivat specifikë për objektivin e përgjithshëm 3

- Të pērcaktohet prania e shenjave dhe simptomave klasike tē DMT1 si poliuria, polidipsia, variacioni i orcksit dhe variacioni i peshës midis fëmijëve me DMTI të perfshirě nê studim, nê total, sipas giinisé dhe tẻ verifikohen nëse ka ndryshime gïnore statistikisht domethēnëse midis fëmijēve me dhe pa këto shěnja dhe simptoma klinike.
- Té pêrcaktchet prania e eneurezis nokturna, dobėsisé, dhimbjeve tẽ kokẻs, konstipacionit, dhimbjeve abdominale, te vjellave dhe diarresè midis fémijéve me DMT1 tę pëffhirẻ nẻ studim, nê total, sipas giinisę đhe tê verifikohen nëse ka ndryshime giinore statistikisht domethēnēse midis fëmijēve me dhe pa kēto shēnja dhe simptoma klinike.
- Të pērcaktohet prania e kandidozës crale, infeksioneve rekurente të lëkurës, erës së acetonit, distresit respirator kusmaul, rënkimeve, përgjumjes, konfuzionit dhe edemēs cerebrale/komës midis fëmijēve me DMT1 të pērfshirë nē studimb, nē total, sipas gjimisë dhe të verifikohen nēse ka ndryshime ginore statistikisht domethěnëse midis fèmijēve me dhe pa kęto shēnja dhe simptoma klinike.
- Të pércaktohet se cilat shenja dhe simptoma klinike paraqesin diferenca moshore statistikisht domethěnèse midis fémijěve me DMTI tẻ përfshirè nè studim.
- Të përcaktohet numri i episodeve të glukozurisé dhe ketonurise tek fêmijet me DMT1 të pêrfshirē në studim.

2.2.4 Objektivil ipërgjithshëm 4

- Té krahasohen fémijêt me DMT1 me KAD me fêmijet me DMT1 pa KAD lidhur me karakteristikat e pérgjithshme che karakteristikat klinike teg tyre.

2.2.4.1 Objektivat specifikë për objektivin e përgjithshëm 4

- Të krahasohet shpẽ́ndarja e moshés, ginisë dhe vendbanimit sipas pranisé ose jo tę KAD midis fêmijëve me DMT1 tê pêrfshirë nẻ studim. Gjithashtu, tě krahasohet mosha mesatare nē diagnozẻ sipas kētyre dy grupeve të pacientēve nẽ studim.
- Te krahasohet kohäzgjatja mesatare e shenjave dhe simptomave sipas pranise ose jo té KAD midis fémijëve me DMT1 té pērfshirë nē studim.
- Te krahasohet statusi i historisë familjare pĕr DMT1, DMT2 dhe prania e infeksioneve paraprirese sipas pranise ose jo te KAD midis fëmijeve me DMT1 të përfshirē në studim.
- Të krahasohet vlera mesatare e numnt të episodeve te ketonurisë dhe numnit të episodeve të glukozunisẻ sipas pranisë ose jo të KAD midis fëmijève me DMT1 tẽ përfshirē nê studim.
- Të krahasohet vlera mesatare e glicemisë, azotemisè, kreatinemisé, natremisē, kalemise, pH-it, HCO3-it, C-peptidit, GAD65, LA-2, triglicerideve, kolesterolit, LDL-se dhe HDL-sé sipas pranise ose jo te KAD midis fèmijève me DMTI tê perrfshire né studim.
- Të krahasohet vlera mesatare e glicemisẻ, azotemisẽ, kreatinemisê, natremisẽ, kalemisë, pH-it, HCO3-it, C-peptidit, GAD65, IA-2, triglicerideve, kolesterolit, LDL-se đhe HDL-sẽ sipas gjinisë sê fêmijěve me DMT1 teै përfshirë nē studim.
- Të krahasohat vlera mesatare e glicemisë, azotemisé, kreatinemisé, natrenuisé, kalemisé, pH-it, HCO3-it, C-peptidit, GAD65, IA-2, triglicerideve, kolesterolit, LDL-sè dhe HDL-sé sipas moshës së fëniijēve me DMT1 të përfshirè nê studim.
- Të krahasohet ashpërsia e KAD bazuar nē pH venoz dhe bazıar në HCO3 serike sipas pranisë ose jo të KAD midis fèmijève me DMT1 tę përfshirè ns̈ studim.

2.2.5 Objektivi i përgjithshëm 5

- Të krahasohet ecuria nè kohë e vlerave tē parametrave tē ndryshëm laboratorikē tek femijēt me DMT1 me KAD dhe fémijët me DMT1 pa KAD.

2.2.5.1 Objektivat specifikë për objektivin e përgithshëm 5

- Të krahasohen vlerat mesatare tē hemoglobinēs sé glukozuar, TSH-së, FT4-ēs, TPO-sé, anti-tiroglobulinẽs, TG-IgA-sé dhe anti-TG-IgG-sẽ midis fèmijeve me DMT1 me KAD đhe fèmijẽve me DMT1 pa KAD nè momentin e đagnozës che momente te tjera gjatë trajtimit apo ndjekje sè kètyre fëmijëve.

2.2.6 Objektivi i përgithshëm 6

- Të pẽrcaktohen faktorêt e lidhur me pranině e ketoacidozẽs diabetike tek fèmijèt me DMT1 në studim.

2.2.6.1 Objektivat specifikë për objektivin e përgithshëm 6

- Tè pèrcaktohet lidhja midis pranisé se ketoacidozss diabetike dhe gjinise, grup-moshës dhe vendbanimit tè fèmijēve me DMTI ne studim.
- Tè përcaktohet lidhja midis pranisé sê ketoaciđozès diabetike dhe kohēzgjatjes sē shenjave dhe simptomave tē fëmijëve me DMT1 nē studim.
- Të pērcaktohet lidhja midis pranisë së ketoacidozäs diabetike the historisë familjarẻ pěr DMT1 dhe DMT2 tę fèmijěve me DMT1 ně studim,
- Të pērcaktohet lidhja midis pranisë së ketoacidozës diabetike dhe pranisë së infeksioneve virale dhe gjendjeve té tjera shpěrthyese di stresit psiko-social tẻ fèmijēve me DMTI ně studim.
- Té pércaktohet lidhja midis pranises ses ketoacidozès diabetike dhe pranisé sé eneurezis nokturna, dobésisę lodhjes dhe pafuqisẽ, dhimbjeve teٌ kokēs, dhumbjeve abdominale, të vjellave, darrësë, kandidozēs orale, infeksioneve rekurente te lekuress traktit respirator the urinar, erěs se acetonit, përgjumjes dhe kanfirionit të fëmijēve me DMT1 nē studim.
- Të pērcaktohet lidhja midis pranisë së ketoacidozēs diabetike dhe numrit tễ episodeve tê glukozunisé dhe ketonurisé tê fèmijêve me DMT1 nê studim.
- Të përcaktohet lidhja midis pranisë së ketoacidozés diabetike dhe parametrave laboratorike te femijĕve me DMT1 ne studim.
- Té pêrcaktohet lidhja midis pranise se autoantikorpeve ishullore dhe llojit te tiabetit me dhe pa ketoacidozess diabetike.

2.3 HIPOTEZAT E STUDIMIT

Hipotezat e zeros sē studimit aktual renditen nẻ vijim:

1. Nuk ka lidhje midis pranisë se infeksioneve virale, stresit psiko-social dhe aplikimit tē vaksinave the giinisë dhe moshës së femijëve me DMT1.
2. Nuk ka lidhye midis kohěs fillimi i simptomave-diagnoza e DMT1 dhe gjinise đhe moshës së fënijēve me DMT1.
3. Nuk ka lidhje midis statusit tè KAD dhe pranise se nje sëte gjendjesh klinike te fêmijẽve me DMT1, përfshirẽ: poliurins̃, polidipsinẻ, variacionin e peshës dhe oreksit, eneurezis nokturna, dobessise/lodhjes, dhimbjen e kokēs, konstipacionin, dhimbjet abdominale, tě vjellat, diarrenes, kandidozěn orale, vaginitin monilial, infeksionet rekurente tę lěkures, erèn e acetonit, distresin respirator, rènkimet, dispnenë, pérgjumjen, konfuzionin dhe edemèn cerebrale/koman.
4. Nuk ka lidhje midis moshés sẻ fémijéve me DMT1 the pranise sé kandidozěs orale, distresit respirator, rénkimeve, dispnesē dhe edeme̊s cerebrale/komas.
5. Nuk ka lidhje midis statusit te KAD dhe grup-moshés, moshes ne diagnozé,
ginise che vendbanimit tê fèmijève me DMT1, kohèzgatjes sê shenjave dhe simptomave, historise familjare pēr DMT1 dhe DMT2, dhe infeksioneve parapritese.
6. Nuk ka lidhje midis statusit te KAD dhe vlerels mesatare tẽ një sêre̊ parametrash laboratorike, pěrfshirè: numrin e episodeve tę ketomurisè dhe glukozurisé, nivelit té glicemisé, azotemisě, kreatinemisé, natremisě, kalemis厄゙, pH -it, $\mathrm{HCO} 3, \mathrm{C}$ peptidit, GAD65, IA-2, triglicerideve, kolesterolit, LDL dhe HDL.
7. Nuk ka lidhje midis gjinisé sé femijěve me DMT 1 dhe nivelit te kolesterolit dhe LDL-se.
B. Nuk ka lidhje midis moshés sé fèmijéve me DMT'1 dhe nivelit tê kreatinemises, natremisë dhe C-peptidit.
8. Nuk ka lidhje midis statusit dhe KAD dhe ashpërsisé sé KAD bazuar në nivelin epH venoz dhe nivelin e HCO 3 serike.
9. Nuk ka lidhje midis statusti tē KAD dhe vlerēs mesatare të parametrave tē ndryshēm laboratorikè, nē kohë të ndryshme té realizimit tè matjeve të këtyre parametrave laboratorikē (HbAlc, TSH, FT4, TPO, anti-Tiroglobulina, TGIgA, TG-IgG).
10. Nuk ka lidhic midis statusit të KAD me vendbanimin e fèmijēve me DMT1, statusin e historise familjare pèr DMT1 dhe DMT2, infeksionet virale paraprirese, stresin psiko-social, dhe paraqitjeve klinike te fermijëve me DMT1 (eneurezis nokturna, dobesisélodhjes, dhimbjen e kokés, konstipacionin, dhimbjet abdominale, te vjellat, diarrené, kandidozën orale, vaginitin monilial, infeksionet rekurente tę lékuręs, erěn e acetonit, distresin respirator, rěnkimet, dispnenē, përgiumjen, konfuzionin dhe edemẽn cerebrale/koman).

KAPITULLI III. METODOLOGJA

3.1 TIPI I ST UDIMIT

Ky studim përfaqēsonnjē seri rastesh të ekzaminuar nē kohë tē ndryshme pas vendosjes sẻ diagnozěs sẽ interesit (diabet mellitus tip 1).

3.2 POPULLATANË STUDIM DHE KAMPIONIMI

Popullata e studimit përfshiu tē giithè fèmijēt e diagnostikuar nē mënyrẽ pērfundimtare me diabet mellitus tip 1 (DMT1) pranë shērbimit tonë nē periudhēn 1 Janar 2010-31 Dhjetor 2014. Nê total, gjatē kësaj periudhe uparaqitēn pranc̄ shc̄rbimit tonẽ 152 fèmijë tê cilèt rezultuan me DMT1. Kêta fèmiję përfaqęsojnê dhe popullatên finale tè studimit tonē,

3.3 KRITERET E PRANIMIT DHE KRITERET PËRJASHTUESE

Kriteret e përfshirjes: né studim u pérfshine $\mathbf{1}$) rastet e reja té moohès < 15 vjeg tẻ diagnostikuar pe herể tê parê me diabet melitus tip 1 gjatẽ periudhěs Janar 2009 Dhjetor 2013 rezident nẻ shqipêri, e cila nga pikpamja gjeografike i korrespondon kufijve administartiv dhe censusit, 2) individêt tê cilest injeksionin e parę tê insulinés e morën perpara ditellindjes së 15 -té dhe rezident në shqipêri në kohën e administrimit pêr herē të parè tê insulinēs;
Kriteret epërjashtimit: u përjashtuan nga studimi rastet e reja ≥ 15 vjec gatẽ periudhës 2009-2013, rastet e diabetit melitus nga shkaqe sekondare si rezultat i një patologjic primare (fibroza kistike, kortikoterapia, MODY, etj), rastet të cilat nuk janë monitoruar nē mēnyré té rregullt dhe rastet me të dbëna jo tē plota.

3.4 MBLEDHJA E TË DHËNAVE

3.4.1 Instrumentet për mbledhjen e të dhënave

- Mënyra e mblechjes sê tę chěnave:

Diagnoza e diabetit melitus tip 1 u përcaktua bazuar në̀ tê dhènat klinike dhe ekzaminimet laboratorike sipas kritereve t® OBSH. Data e shfaqjes se diabetit u pērcaktua si data e injeksionit të parē të insulinēs. Incidenca moshē-specifike dhe seksspecifike u llogarit duke ndare raste e reja sipas grup-moshès nẻ̉ 3 grupe (I: 0-4 vjec, II: $5-9$ vjeç, dhe III: $10-14$ vjeç). Numri i fëmijēve the adoleshentēve $0-14$ vjeç nē Shqipëri nga viti 2010-2014 sipas INSTAT ështe 3,032,819.

Popullsia					
	2010	2011	2012	2013	2014
$\mathbf{0 - 4}$					
Gjithsej	178.704	175.303	172.297	171.367	170.435
Femra	84.470	83.001	81.798	81.662	81.309
Meshkuj	94.234	92.302	90.499	89.705	89.126
$\mathbf{5 - 9}$					
Gjithsej	219.101	204.156	197.543	186.479	179.605
Femra	104.305	96.782	93.881	88.249	85.214
Meshkuj	114.796	107.374	103.662	98.230	94.391
$\mathbf{1 0 - 1 4}$					
Gjithsej	259.147	247.414	231.502	223.871	215.892
Femra	126.303	120.549	112.019	108.317	104.133
Meshkuj	132.844	126.865	119.483	115.554	111.759

Mbledhja e të dhēnave pēr të gjitha rastet e reja nga janari 2010 deri nē chjetor 2014 të paraqitur nẻ̉ QSUT, si e vetmija qêndër referuese pêr pacientēt me DMT1 u realizua nēpërmjet hartimit të një kartelẻ klinike standarte. Nē kētë kartelë u hodhēn tẽ thēnat për vlersimin e karakteristikave epideniologiike, klinike dhe laboratorike, sëmundjeve autoimune shoqëruese dhe monitorimi i pacientëve te diagnostikuarme DMT1 për herë të paré, për të ofruar një infommacion të besueshëm. Të dhënat u mblodhën si mëposhtë nga:

1. pyetje interviste prindenit dhe fèmijèt diabetik.
2. epikrizat pěrcjelllesse.
3. ekzaminimi klinik
4. ekzaminimet laboratorike
5. anamnezت̈ e detajuar (prindèrit dhe fémijēt diabetik.): gjeneralitetet (emri, mosha, seksi, data e lindjes, mẻnyra e lindjes, radha e lindjes, věndlindja, vëndbanimi), simptomat klinike prezantuese (specifike dhe jo specifike) dhe kohëzgjatja e tyre (numri nẻ dité), historia e ushqyerjes në foshnjëri (gji, qumēsht lope, formula, miks ase derivate të tjera tē qumēshtit), histori
familjare për diabet (vëllezērimotra, prindër, giyshẻr, tẻ afèrmit e brezit tẻ paë) , vaksinimi, mënyra e zbulimit të sëmundjes (rastësisht gjatē ekzaminimit rutin), diagnoza e gabuar, faktorê tê mundshēm precipitues (infeksione nẻ dy muajet e fundit pêrpara diagnozës, trauma psikologjike), endokrinopati autoimune shoqěruese ně momentin e diagnozěs sề DMT1 pér herê tê parẽ̛. Histori familjare pozitive pẽrkufizohet teٌ pasurit e njè tê afèrmi te brezit tee paré me diabet tip 1 .
epikrizat përcjelllëse - nga qěndrat e shërbimit shẻndetësor primar dhe sekondar rajonale.
ekzaminimi klinik- Ekzaminimi Klinik i detajuar në kohĕn e shtrimit nẻ spital: shēnjat vitale, matjet antropometrike (pesha, gjatēsia, indeksi i masës trupore, BMI ($\mathrm{kg} / \mathrm{m}^{2}$) i shprehur edhe $\mathrm{n} \overline{\mathrm{e}}$ deciacione standarte (BMI-DS), stadi i zhvillimit pubertar sipas Tanner, gjëndja e hidratimit (normal ose i dehidruar), ekzaminim i sistemeve, shënja respiratore (eré acetoni, detres respirator, dispne), niveli i ndërgiegjes (klasifikuar nē 3 kategori sipas sistemit tè pikëzimit Glasgoc̄ tē komēs pēr fèmuijët: normal, alterim i ndèrgiegje dhe koma), shènja tê sęmundjeve autoimune shoqěruese.
6. Ekzaminimet laboratorike-T \bar{c} dhënat laboratorike u morēn pērpara fillimit të terapisè (perfuzione intravenoze ose insulineैs) nę spital. U përdorèn metoda laboratorike standarte pěr matjen e nivelit tê glicemisẽ (vlera normale $70-100 \mathrm{mg} / \mathrm{dl}$), hemoglobinén e glukozuar (HbAlc) me metodẽn HPLC (high-performanoe liquid chromatography method) me vlera normale $4-6 \%$, glukozess dhe ketonet né urine (vlera normal-negative), elektrolitet serik (natrium vlera normale $=135-145 \mathrm{mmol} /$; kalium $=3.5-4.5$ $\mathrm{mmol} /$; azotemia (vlera normale $=10-43 \mathrm{mg} / \mathrm{dl}$, kreatinemi (vlera normale $=0.6-1.2 \mathrm{mg} / \mathrm{dl}$), transaminazat (vlerat normale, $\mathrm{ALP}=30-120 \mathrm{U} / \mathrm{L}$, $\mathrm{AST}=0-35 \mathrm{U} / \mathrm{L}, \mathrm{ALT}=0-45 \mathrm{U} / \mathrm{L}$), lipidograme e fraksionuar (vlerat normale Kolesterol total $=140-220 \mathrm{mg} / \mathrm{dl}$, total, trigliceride $=50-150 \mathrm{mg} / \mathrm{ml}$, LDL-kolesterol $60-110 \mathrm{mg} / \mathrm{dl}$, HDL-kolesterol $>40 \mathrm{mg} / \mathrm{dl}$), C- peptid (vlera normale $=0.17-0.83 \mathrm{nmol} /$), auto-antitrupat lidhur me DMT1; GAD65: negative: < 1.1 U/ml; IA-2A:negative: $<0.76 \mathrm{U} / \mathrm{ml}$. Diagnoza e sērnundjeve autoinune shoqēruese u bazua në pozitivitetin e antikorpeve. Diagnoza e SAT u përcaktua për TSH $>5 \mathrm{mU} / \mathrm{ml}$ (vlerat reference 0.17 4.04 sipas IRMA AcM);FT4 $=7.18 \mathrm{pg} / \mathrm{ml}$, vlerat reference sipas RIA AcM dhe 0.93-1.7 ng/dL sipas ECLLA; FT3 (pg/mL) 2.21--4.99 vlerat reference sipas ICMA, antikorpe anti-tiroid peroksidazs (TPO) >25 ($<20 \mathrm{U} /$ I negative, vlerat reference sipas EIA); > $34 \mathrm{U} / \mathrm{ml}$ dhe $\mathrm{Neo}<70$ neg; anti-tiroglobalin (TG) > $20 \mathrm{U} / \mathrm{ml}$. Anti-Tiroglobulina < U/ml. Diagncza e CD pêrcaktua pe̊r antikorpe anti-transglutaminazave $\lg A$ (TTG-lgA) $>25(<25$
negative, vlerat reference sipas EIA) dhe >10 (<10 vlerat reference sipas sme alegria dhe ELISA); anti-IgG (TTG- lgG) >25 (<25 negative, vlerat reference sipas ELA) dhe >10 (<10 vlerat reference sipas sme alegria dhe ELISA).
Ketoacidoza diabetike (DKA) perkufizohet si pH igjakut <7.3, perqẽndrim bikarbonati $\left(\mathrm{HCO}_{3}\right)<15 \mathrm{mmol} / \mathrm{L}$, me glicemi $>200 \mathrm{mg} / \mathrm{dl}(11 \mathrm{mmol} / \mathrm{L})$, glakozuri, ketonuri the ketonemi. Sipas Shoqatess Ndékombētare e Diabetit nē Fęmijèt dhe Adoleshentēt (ISPAD), 2014 KAD Klasifikohet nẽ tre grupe:
7. e lehtê: $\mathrm{pH}<7.30$ (normal $7,35-7,45$) $; \mathrm{HCO}_{3}<15 \mathrm{mmol} / \mathrm{L}$ (normale >20); pacienti éshtę vigilent.
8. e moderuar: $\mathrm{pH}<7,20, \mathrm{HCO}_{3}{ }^{\circ} \leqslant 15 \mathrm{mmol} / \mathrm{L}$, mund tē jetë e pranishme pērgiumja c lchtec.
9. e rëndë: $\mathrm{pH}<7.10 \mathrm{HCO}_{3}{ }^{-}<5 \mathrm{mmol} / \mathrm{L}$, mund tē ndodhë pērgjumje ose komē.

3.5 ASPEKTET ETIKE

Studimi aktual u miratua nga Komiteti i Etikẽs Bio-Mjekęsore pranê Fakultetit tẻ̉ Mjekëisê, Tiranë.
Konsensusi. U mor pélqimi nga tê gjithê prindërit e pacientẻve pěr kontribut nê studimin aktual. Studimi u miratua nga komiteti kërkimor dhe etik i spitalit kontribues. Konflikt interesi: nuk ka

3.6 PËRKUFIZIMI I NDRYSHORËVE

3.6.1 Fakterët e pavarur

Gjinia
Përkufizimi operacional: Seksi biologiik i fèmijëve nē studim, sic shënohet në kartelēn mjekësore.
Shkolla e maties Dikotomike (mashkull, femër),

Mosha

Pèrkuftzimi operacional: Mosha në vite e fèmijës në studim, sis shënohet nê kartelēn mjek ${ }^{2}$ sore.
Shkalla e maties: Numerike, diskrete (mosha nể vite, psh., 3 vjec, 4 vjeç, 5 vjec, etj.).

Vendbanimi

Përkufizimi operactonal: Zona ku banon fëmija nê studim, sic shênohet nè kartelēn mjekësore.
Shkalla e maties. Dikotomike (zonē urbane, zonë rurale).

Dyshimi për diabet në momentin e shtrimit

Përkaffzimi operacional: Prania e dyshimit tẽ diagnozës sê diabetit mellitus tip 1 nê momentin e shtrimit në spital tẽ fèmijĕs nẻ studim, sic shěnohet nẻ kartelěn mjekẽsore. Shkalla e maties Dikotomike (jo,po),

Sezoni i lindjes

Përkufizimi operacional: Stina kur ka lindur fèmija në studim, sic shënohet nè kartelēn mijekësore.
Shkalla e maties. Nominale (pranveré, veré, vjeshtẻ, dimér).

Sezoni i diagnozës së DMT1

Përkufizimi operacional: Stina kur ështē diagnostikuar me DMT1 fèmija në studim, sic shēnohet nè kartelĕ̀n mjekēsore.
Shkalla e maties: Nominale (pranverè, verè, vjeshtë, dimēr).

Historia familjare për DMT1

Përkudîzimioperacional: Prania c të afënuve të shkallës sē parē, tē shkallēs së dytē ose tê afêrmve me të largêt me diabet mellitus tip 1 , sic shënohet nẻ kartelẽn mjekësore. Shkalla e maties. Dikotomike (jo,po).

Historia familjare për DMT2

 tê afêrmve me tę largèt me diabet mellitus tip 2 , sic shënohet nẻ kartelên mjekẻsore. Shkalla e maties. Dikotomike (jo,po).

Prania e infeksioneve virale shpërthyese

Pèrkuftzimi operacional: Prania e infelssioneve virale ose gjëndjeve të tjera shpērthyese tek fëmijēt nē studim, sic shēnohet nē kartelën mjekēsore.
Shkalla e maties Dikotomike (jo,po).

Prania e stresit psiko-social

Përkufizimi operacional: Prania e gjendjeve qẻ cojnè nẻ stres psiko-social, tè tilla si divorci apo vdekja e prindērve, fëmijët nē studim, sic shënohet nē kartelēn mjekësore. Shkolla e maties Dikotomike (jo,po),

Statusi i vaksinimit

Përkufizimi operacional: Fakti nëse fèmijêt nè studim janẻ vaksinuar sipas kalendarit tê vaksinimit, sic shênohet nè kartelèn mjekẻsore.

Shkalla e maties Dikotomike (jo.po).

Koha nga fillimi i simptomave deri në diagnozën e DMT1

Përkufizimi operacional: Koha e kaluar nga momenti i fillimit te simptomave deri në momentin e vendosjes pêrfundimtare tẻ diagnozẻs sê diabetit mellitus tip 1 tek femija nē studim, sic shěnohet nẻ kartelẽn mjekẻsore.
Shkalla e maties Numerike, diskrete (kohẻ nẻ ditè, psh., 3 ditę, 4 ditę, 5 ditë, etj.)

Pranta e poliurisẻ

Përkuffizimi operacional: Prania e poliurisẻ tek fëmijět nẻ studim, sic shēnohet ně kartelën mjekësore.
Shkalla e matjes: Dikotomike (jo,po).

Prania e polidipsisë

Përkufizimi operactonal: Prania e polidipsisē tek fémijët nē studim, sic shënohet në kartelën mjekësore.
Shatla e maties. Dikotomike (jo,po).

Prania e variacionit të oreksit

Përkufizimioperacional: Prania e luhatjes sẻ oreksit tek fëmijēt nē studim, sic shẽnohet nę kartelèn mjekèsore.
Shkalla e maties. Dikotomike (jo,po).

Prania e variacionit të peshës trupore

Përkudizimi operacional: Prania e luhatjes sé peshës trupore tek fèmijët në studim, sic shênohet nê kartelèn mjekêsore.
Shkalla e maties. Dikotomike (jo,po).

Pranta e eneurezis nokturna

Përkuffzimi operaciond: Prania e eneurezis nokturna tek fémijēt në studim, sic shēnohet nê kartelēn mjekēsore.
Shkolla e maties Dikotomike (jo,po).

Prania e pafuqisë/lodhjes

Përkufizimioperacional: Prania e pafuqisè/lodhjes ose dobesisę tek fèmijët nê studim, sio shênohet nê kartelën mjekẻsore.
Shkoilla e maties Dikotomike (jo,po),

Prania e dhimbjes së kokës

Përkufizimi operacional: Prania e dhimbjes se kokës tek fèmijèt nê studim, sic shĕnohet nề kartelën mijekēsore.
Shkalla e maties Dikotomike (jo.po).

Prania e konstipacionit

Përkufizimi operacional: Prania e konstipacionit tek fëmijęt ně studim, sic shęnohet në kartelèn mjekessore.
Sykalla e maties. Dikotomike (jo,po).

Prania e dhimbjes abdominale

Pèrkadizimi operactonal: Prania e dhimbjes abdominale tek fèmijēt nē studim, sic shēnohet né kartelēn mjekésore.
Shkalla e maties. Dikotomike (jo,po).

Prania etë vjellave

Pèrkuftzimi operacional: Prania c tè vjellave tek fëmijēt nē studim, sic shënchct në kartelèn mjekèsore.
Shkslla e maties Dikotomike (jo,po).

Prania e diarresë

Përkufizimi operacional: Prania e diarresê tek fèmijest nẻ studim, sic shënohet nê kartelèn mjekestore.
Shkolla e maties Dikotomike (jo,po).

Pranta e kandidozës orale

Përkuffzimi operacionall: Prania e kandidozës orale tek fèmijēt né studim, sio shènohet nê kartelën mjekēsore.
Shkalla e maties. Dikotomike (jo,po).

Prania e polidipsisë

Përkudfzimi operactonal: Prania e polidipsisē tek fëmijët nē studim, sic shënohet në kartelën mjekësore.
Shkalla e maties. Dikotomike (jo,po).

Prania e vaginitit molinial

Përkufizimi operacional: Prania e vaginitit molinial tel fémijęt nè studim, sic shēnohet ne kartelèn mjekèsore.
Shkalla e maties. Dikotomike (jo,po).

Prania e polidipsisë

Perkufizami operacional; Prania e polidipsisē tek fèmijĕt nē studim, sic shënohet në kartelèn mjekesore.
Shikalla e maties. Dikotomike (jo,po).

Prania e infeksioneve rekurente të lëkurës

Përkafizimi queracional: Prania e infeksioneve rekurente tê lêkurĕs tek fèmijēt nê studim, sic shěnohet ně kartelèn mjekęsore.
Shkalla e maties. Dikotomike (jo,po).

Prania e erës së acetonit

Pèrkuftzimi operacional: Prania e crēs së acctonit tck fëmijēt nē studim, sio shēnohct në kartelën mjekēsore.
Shkalla e maties Dikotomike (jo,po).

Prania e rënkimeve

Përkuftzimi operacional: Prania e rẻnkimeve tek fèmijềt nề studim, sic shênohet nê kartelën mjekésore.
Shanalla e maties Dikotomike (jo,po).

Prania e distresit respirator

Përkufizimioperacional: Prania e distresit respirator tek fèmijĕt në studim, sic shènohet nê kartelën mjekēsore.
Shkalla e maties: Dikotomike (jo,po).

Prania e dispnesë

Përkuffizimi operactonal: Prania e dispnesë tek fèmijët nē studim, sic shënchet në kartelën mjekësore.
Shkalla e matjes. Dikotomike (jo,po).

Prania e përgjumjes

Përkuffzimi operactonal: Prania e përgiumjes tek fërnijët në studim, sic shēnohet në kartelen mjekesore.
Shkalla e maties Dikotomike (jo,po).

Prania e konfuzionit

Përkufizimi operacional: Prania e konfuzionit tek fëmijȩt nê studim, sic shěnohet ně kartelèn mjekesore.
Shkolla e maties Dikotomike (jo,po).

Prania e edemës cerebrale/komas

Përkaffzimi oneracional: Prania e edemẽs cerebrale apo komas tek fèmijët në studim, sic shënohet nẽ kartelẽn mjekẻsore.
Shkalla e maties Dikotomike (jo,po),

Numri i episodeve të glukozurisë ose të ketonurisë

Përkufizimi operacional: Numni i episodeve te evidentuara dhe te regjistruara te ketonurisē ose tē glukozurisë tek fèmijēt nē studim, sic shënohet në kartelën mjekēsore. Shkalla e matjes. Numerike, diskrete (mmri i episodeve, psh., 1 episod, 2 episode, etj).

Niveli i parametrave tê ndry shëm laboratorikë

Përkufizimi operactonal: Niveli i matur i parametrave laboratorikë (psh, glicemia, azotemia, kreatinemia, efj.) tē interesit tek fémijēt në studim, sic shënohet nē kartelēn mjekësore.
Shkolla e maties Numerike, c vazhduar

Koha e matjes së parametrave të ndryshmë laboratorikë
Përkufizimioperacional: Momenti kur ěshtë realizuar matja e parametrave laboratorikë tę interesit tek fëmijët né studim, sic shënohet nę kartelēn mjekẻsore.
Shkolla e maties: Kategorike, ordinale (në momentin fillestar, pas 3 muajsh, pas 6 muajsh, etj.).

3.6.2 Faktorët e varur

Diagnoza e diabetit mellitus tip 1

Përkuffizimi operacional. Konfirmimi i diagnozés sẻ DMT1 tek fémija në studim, sic shēnohet nē kartelēn mjekēsore.
Shkolla e maties: Dikotomike (jo,po).

Prania e ketoacidozës diabetike

Përkufizimi operactonal: Vendimi pēr praninë e ketoacidozës diabetike në varēsi tē nivelit të pH venoz ose tē HCO3 serik, sic shënohet në kartelēn mjekēsore,
Shkalla e matjes: Dikotomike (jo,po),

Lloji i diabetit tip 2

Përkuffizimi operacional: Fakti nẽse DTM1 shoqěrohet ose jo me diagnozën e ketoacidozés diabetike, sic shënohet nè kartelẽn mjekèsore.
Shkalla e matiess Dikotomike (DMT1 me KAD, DMT1 pa KAD).

3.7 ANALIZA STATISTIKORE E TË DHËNAVE

Pęrr tẻ analizuar tẻ dhěnat nẻ kêtẻ studim shkencor u pếrdorẻn njê sêrẻ̉ teknikash dhe testesh statistikore.
 perkatesse. Perr té perrshltuar tee dhenat numerike, u perrdor raportimi i madhésise tê prirjes qendore, nẽ kĕtę rast vlera mesatare, dhe madhe̋sitę e dispersionit, nẻ kêtę rast deviacioni standard:
Për të krahasuar variablet kategorike u përdor testi hi katror, në rast se tabela rezziltante ishte né përmasat 2×2, atehere u raportua vlera e P-sẻ sipas testit Fisher's exact test, qé jep një llogaritje mē tè saktè të vlerës sē P-sê.
Per krahasimin e vlerave mesatare te variablit te varur numerik sipas kategorive te variablit të pavarur, u pērdor testi jo-parametrik Mann-Whitney U test për dy mostra tē pavarura nẻ rastin kur variabli i pavarur kishte vetẻm dy kategori; përndryshe, kur variabli i pavarur kishte >2 kategori u përdor testi jo-parametrik Kruskal Wallis për k mostra të pavarura. Testet jo parametrike u përdorẽn nër rast se variabli i varur rezultoi i shpëmdarè nè mênyrè jo normale nê popullatẽn e studimit
Né rast se variabli i varur rezultoi i shpěmdaré nẽ mẽnyré normale në popallatẽn e studimit, atêherê pèr krahasimin e vlerave mesatare tę tij sipas kategorive tê variablit tę pavarur u përdor testi ti studentit pér dy mostra te pavarura.
Pěr tè evidentuar lidhjet midis pranisē sè ketoacidozess dabetike dhe variableve tê pavarur u përdor testi i Regresionit Logjistik Binar. Ky test llogarit gjasat e pranisê sẽ ngiarjes sể vanur sipas kategorive tê variablit tẻ pavarut, duke marrè si referencê njèrèn nga kategonitě e variablit tę pavarur. Pęr shembull, nëse interesi êshtę qę tê mësohet se sa janẻ gjasat e pranisë së KAD-it tek femrat nẻ raport me meshkuj, atēherë realizohet testi i Regresionit Lcgjistik Binar nga ku, në rastin konkret, rezulton se femrat kane 2.24 herē mē shumē gjasa pēr të zhvilluar KAD-in krahasuar me meshkujt dhe ky ndryshim éshtē domethënēs nga ana statistikore ($\mathrm{P}=0.025$) (Tabela 28). Testi i Regresionit Logistik Binar raporton raportin e gjasave (OR), intervalin e besimti 95% pēr raportin e giasave, shkallët e lirisë si dhe vlerẽn e domethènies statistikore (vlera e P -sè).
Pērr tē paraçitur tē dhēnat upërdorēn tabclat e shumēllojshme nē varēsi tē infornacionit U pęrdorěn grafikē tę llojeve tę ndryshme pêr tê paraqitur dhe pèr tę ilustruar gietjet e studimit.
Nê tê giitha rastet, lidhjet midis variableve u konsideruan domethênèse nêse vlera e domethěnies statistikore ishte ≤ 0.05 (ose $\leq 5 \%$).
Te giitha analizat statistikore u realizuan pêrmes paketès statistikore Statistical Package for Social Sciences, versioni 26 (IBM SPSS Statistics for Ëindoss, version 26).

KAPITULLIIV. REZULTATET

4.1 TË DHËNA TË PËRGJITHSHME SOCIODEMOGRAFIKE

Nē kētë studim u pêrfshinë 152 fëmijē me diabet mellitus tip 1 (DMT1).
Tabela 4.1 në vijim paraqet shêprndarjen e subjekteve nể studim sipas moshès nē momentin e diagnczës, gjinise dhe vendbanimit. Mund të vihet re se mosha mesatare e subjekteve nē momentin e diagnozēs është 8.3 vję ± 3.6 vjet. Më shpesh, fëmijët me DMT1 i përkasin grup-moshēs $5-9$ vjeç (40.1%), pasuar nga grup-mosha $10-14$ vjeç (39.5%) dhe ajo 0-4 vjeç (20.4%).
Nga ana tjetēr, gati gjysma e fëmijēve me DMT1 janē meshkuj (52%) dhe pjesa tjetër jane femra (48%).
Tre tę kartërtat e fèmijëve me DMT1 jetojnè né zonat urbane dhe 25% në̀ zonat rurale.

Variabli	Numri absolut	Frekuenca (\%)
Total	152	100.0
Mosha në momentin e diagnozës (vlera mesatare \pm deviacioni standard)	8.3 ± 3.6	
Grup-mosha		
$\mathbf{0 - 4}$ vjec	31	20.4
$\mathbf{5 - 9} \mathbf{~ v j e c ~}$	61	40.1
$\mathbf{1 0 - 1 4}$ vjec	60	39.5
Gjinia	79	
Mashkull	73	52.0
Femër		48.0
Vendbanimi	114	75.0
Urban	38	25.0
Rural		

Nè Tabelën 4.2 paraqitet shpêrndarja e fëmijēve nē studim sipas diagnozēs sé dyshuar në̆ shtrim dhe diagnozës përfundimtare. Mund të vihet re që, në momentin e shtrimit, 82.2% e fèmijëve u dyshuan pĕr diabet kurse 17.8% nuk u dyshuan për diabet, pas konfirmimit tē diagnozēs, të giithē fèmijët rezultuan të prekur nga diabeti tip 1 .
 perfioudimature

Variabli	Numri absolut	Frekuenca (\%)
Dyshimi për diabet në momentín e shtrimit Jo Po	27	
Diagnoza përfundimtare diabet	125	82.2
Jo		
Po	0	0.0

Ne Tabelen 4.3 paraqiten te dhesnat liđhur me llojin e diabetit nẻ varési të pranisë se ketoacidozës diabetike (KAD). Rezultoi qē nē 67.8% të rasteve diabefi ishte i shoqëruar me KAD dhe nē pjesēn tjetë̀ prej 32.2% t̄̄ fémijëve, diabeti nuk ishte i shoqëruar me KAD.

Tabela 4.3. Prania e ketoacidaçis diabetike tek femijät pjesëmaurës me DMTI

Variabli	Numri absolut	Frekuenca (\%)
Lloji I diabetit tip 1		
DMT1 me KAD	103	67.8
DMT1 pa KAD	49	32.2

Né Tabelën 4.4 paraqiten tē dhēnat lidhur me sezonin e lindjes sē fémijëve në studim dhe sezonin e diagnozẽs sé diabetit tip I. Mund tẽ vihet re qê afërsisht njê e kate̊rta e fèmijëve kaně lindur nẽ secilěn prej stinẽve tê vitit. Ndërkohẽ, mẽ shumẽ se giysma e diagnozave tę DMT1 kanę ndodhur nè vjeshtè che dimèr (60.5%) kurse pjesa tjetër prej 39.5% të rasteve janë diagnostikuar nè pranvere dhe vere.
 sipas sezonit të lindjes dhe sezonit te diagnogès si้ DMT1

Variabli	Numri absolut	Frekuenca (\%)
Sezoni i lindjes		
Pranverë	39	25.7
Verë	36	23.7
Vjeshtë	41	27.0
Dimër	36	23.7
Sezoni i diagnozës së DMT1		
Pranverë		

Verë	39	25.7
Vjeshtë	21	13.8
Dimër	49	32.2
	43	28.3

Ne Tabelén 4.5 paraqitet informacioni lidhur me historine familjare te pjesěmarresve nê studim pēr DMT1 dhe DMT2. Mund tề vihet re qę histori familjare pér DMT1 kanê 15.8% e femijeve dhe pêr DMT2 kanè 17.8% e femijeve tê pêrfshiré nê studim. Nga ana tjetēr, 69.1% e fëmijēve nuk kishin histori familjare për diabet tẽ cdo tipi, 28.3% kishin histori për diabet tip 1 ese tip 2 dhe 2.6% kishin histori pozitive edhe për diabetin tip 1 edhe për ate tip 2.
Midis fëmijêve me histori familjare per DMT1, me shpesh rezultoi i prekur gjyshi/giyshja (54.2%, duke përfshirë che rastin ku përvec gjyshit/giyshes ishte preku dhe nëna dhe vellai/motra) dhe vëllai/motra (në̈ 29.2% tē rasteve); midis fémijève me histori familjare pēr DMT2, më shpesh rezultuan tē prekur tezet, hallat, dajat, xhaxhallaret, kushërinjte (48.1%) dhe giyshi'giyshija (40.7\%),

Tabela 4.5. Tẽ dhëna Hidhur me historinë fimilijave perr DMTT dhe DMT2

Variabli	Numri absolut	Frekuenca (\%)
Historia familjare për DMT1	128	84.2
Jo	24	15.8
Po		
Historia pozitive për DMT1, kush person ${ }^{1}$	1	4.2
Nëna	11	45.8
Gjyshi	3	12.5
Babai	1	4.2
Nëna dhe gìyshi	1	4.2
Tëtjerë (teze, halle, dajë, xhaxha, kushërinj)	6	25.0
Vella/motër	1	4.2
Vëla/motër dhe giyshi $^{\text {Historia familjare përr DMT } 2^{2}}$		
Jo	125	82.2
Po	27	17.8

[^0]| Historia pozitive për DMT2, kush person | | |
| :--- | :--- | :--- |
| Nëna | 1 | 3.7 |
| Babai dhe të tjerë (teze, halla, daja, xhaxha, | 1 | 3.7 |
| kushërinj) | 9 | 33.3 |
| Gjyshi | 2 | 7.4 |
| Gjyshi dhe të tjerë (teze, halla daja, xhaxha, | 2 | 7.4 |
| kushërinj) | 10 | 37.0 |
| Babai | 2 | 7.4 |
| Tëtjerë (teze, halla daja, xhaxha, kushërinj) | | |
| Valla/motër | | |
| Histori për DMT1 dhe/ose DMT2 | 105 | 69.1 |
| Pa histori për DMT1 ose DMT2 | 43 | 28.3 |
| Histori për DMT1 ose DMT2 | 4 | 2.6 |
| Histori për DMT1 dhe DMT2 | | |

Tabela 4.6 paraqet disa te dhenna lidhur me pranine e infeksioneve virale apo giendjeve tê tjera shpërthyese, praninë e stresit psiko-social dhe aplikimin e vaksinave midis fêmijève me DMT1 tê pérfshirê nẻ studim. Mund tẻ vihet re qẻ nẻ 23.7% tẻ rasteve është evidentuar prania e infeksioneve virale (enteroviroza, hepatit, infeksione të shpeshta bakteriale te rrugẽve tex siperm respiratore) dhe giendjeve tet tjera shperthyese (konvulsione febrile, traume toraksi) pērpara shfaqies së DMT1. Stresi psiko-social (divorc, vdekja e një̆ prindi) u vu re nē 2.6% të fémijēve. Ndērkohë, tè gjithē fémijët (100%) kishin kryer të plotë kalendarin e vaksinimit. Nuk u evidentuan diferenca ginore statistikisht domethēnëse lidhur me kēta tregues.

Tabela 4.6 Tz dhëna për praniñ e infeksioneve virale, stresì psike-social alte apilkimin e vaksinave,

Variabli	Total	Gjinia		$\begin{array}{\|l\|l\|} \hline \text { Vlera } \\ \text { P-sese } \end{array}$
		Mashkull	Femër	
Infeksione virale dhe giendje të tjera shpërthyese Jo Po	$\begin{aligned} & 116(76.3)^{2} \\ & 36(23.7) \end{aligned}$	$\begin{aligned} & 56(70.9) \\ & 23(29.1) \end{aligned}$	$\begin{aligned} & 60(82.2) \\ & 13(17.8) \end{aligned}$	0.127
$\begin{aligned} & \text { Stresi psiko-social } \\ & \text { Jo } \end{aligned}$	148 (97.4)	79 (100.0)	69 (94.5)	0.051

[^1]| Po | $4(2.0)$ | $0(0.0)$ | $4(5.5)$ | |
| :--- | :--- | :--- | :--- | :--- |
| Vaksinuar | | | | |
| Jo | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | - |
| Po | $152(100.0)$ | $79(100.0)$ | $73(100.0)$ | |

Lidhur me diferencat moshore, mund tē vihet re se njē përquindje në mënyrē domethënëse më e lartë e fënijëve tē moshës 0-4 vjeç paraqesin histori të infeksioneve virale ose gjendje shpērthyese (41.9%) krahasuar me fèmiejt 5-9 vjeç (27.9) apo ata të moshės $10-14$ vjec (10%) $(\mathrm{P}=0.002)$ nderkohé q qü nuk u vunẻ re diferenca moshore statistikisht domethënëse lidhur me treguesit e tjerē (Tabela 4.7).

Tabelat 4, 7 T7 Ahënat për provinë e infeksioneve virale, stresì̀ psike-sociat athe aplikimin e vaksinave, sipars moshë̀s sĕ pjesëmarrësve

Variabli	Mosha			$\begin{aligned} & \hline \text { Vlera } \\ & \text { P-ses }{ }^{1} \end{aligned}$
	0-4 yjec	5-9 vjec	10-14 vjec	
Infeksione virale dhe gjendje të tjera shpërthyese Jo Po	$\begin{aligned} & 18(58.1)^{2} \\ & 13(41.9) \end{aligned}$	$\begin{aligned} & 44(72.1) \\ & 17(27.9) \end{aligned}$	$\begin{aligned} & 54(90.0) \\ & 6(10.0) \end{aligned}$	0.002
```Stresi psiko-social Jo Po```	$\begin{aligned} & 31(100.0) \\ & 0(0.0) \end{aligned}$	$\begin{aligned} & 58(95.1) \\ & 3(4.9) \end{aligned}$	$\begin{aligned} & 59(98.3) \\ & 1(1.7) \end{aligned}$	0.317
Vaksinuar   Jo   Po	$\begin{aligned} & 0(0.0) \\ & 31(100.0) \end{aligned}$	$\begin{aligned} & 0(0.0) \\ & 61(100.0) \end{aligned}$	$\begin{aligned} & 0(0.0) \\ & 60(100.0) \end{aligned}$	-

Tabela 4.8 paraqet te dhěnat lidhur me kohẻn e kaluar nga shfaqia e simptomave té diabetit deri në momentin e daagnozēss sè kësaj sêmundjeje. Koha mesatare nga shfaqja
 Mediana ështe̊ 21 ditẽ. Koha minimale për vendosjen e diagnozës varionte nga brenda
 gjinore lidhur me kohěn mesatare nga shfaqja e simptomave deri ne momentin e diagnozěs, kurse diferencat moshore rezultuan statistikisht domethèněse: 17.48 ditě midis fèmijevve $0-4$ vjeg, 28.61 ditẽ midis fèmijëve $5-9$ vjeç dhe 21.03 ditē midis fémijève 10-14 vjeç (Tabela 8).

[^2]Tabela 4. K Koha midir shfaqjes sỉ simptomave dhe diagnosës sil DMTI

Parametri statistikor	Koha fillimi i simptomave - diagnozë e DMT1 (në ditē)	Vlera e P-së për   diferencën   ginore	Vlera eP-së për   diferencën moshore
Vlera mesatare	23.35	$0.362^{\text {t }}$	$0.013^{2}$
Deviacioni standard	17.16		
Mediana	21.00		
Moda	30		
Vlera minimale	0		
Vlera maksimale	90		
Spektri	90		

Tabela 4.9 detajon të dhënat lidhur me kohën e kaluar midis shfaqjes së simptomave tē diabetit dhe vendosjes sē điagnozēs së DMT1. Në rreth një tê katërtēn e rasteve ( $25.7 \%$ ) diagnoza e DMT1 ēshtē vendosur 30 ditë pas shfaqjes së simptomave, nē $19,7 \%$ të rasteve diagnoza èshtè vendosur 14 ditè pas shfagjes sê simptomave, nẽ $13.2 \%$ tê rasteve diagnoza ēshtë vendosur pas 21 ditēsh dhe në $11.8 \%$ të rasteve diagnoza është vendosur 7 ditě pas fillimit tê simptomave.
Nē rastet më ckstreme koha më e shpcjtē e vendosjes së diagnozēs ishte nē të njējtēn ditę me shfaqjen e simptomave (vetëm nề I fèmijé) dhe koha mẻ e giatê ishte 90 ditë ( n 厄̌ 3 fémijè).
 DMTI

Variabli	Numri absolut	Frekuenca (\%)
Koha fillimi I simptomave -		
diagnozë e DMT1 (në ditë)		
$\mathbf{0}$	1	0.7
$\mathbf{1}$	1	0.7
$\mathbf{2}$	1	0.7
$\mathbf{3}$	1	0.7
$\mathbf{4}$	2	1.3
7	18	11.8

[^3]| $\mathbf{1 0}$ | 14 | 9.2 |
| :--- | :--- | :--- |
| $\mathbf{1 4}$ | 30 | 19.7 |
| $\mathbf{2 0}$ | 3 | 2.0 |
| $\mathbf{2 1}$ | 20 | 13.2 |
| $\mathbf{2 4}$ | 1 | 0.7 |
| $\mathbf{2 8}$ | 5 | 3.3 |
| $\mathbf{3 0}$ | 39 | 25.7 |
| $\mathbf{4 5}$ | 1 | 0.7 |
| $\mathbf{6 0}$ | 12 | 7.9 |
| $\mathbf{9 0}$ | 3 | 2.0 |
| Total | 152 | 100.0 |

### 4.2 TË DHËNA LIDHUR ME KUADRIN KLINIK

Tabela 4.10 paraqet tê đhẽnat lidhur me kuadrin klinik tê fêmijēve me DMTI tê përfshirë nē studim. Pothuajse tē giithē fèmijèt pēr të cilēt kishte informacion në dispozicioin paraqitenn poliuri the polidipsi ( $99.3 \%$ ). Nga ana tjetěr, nẻ $55.2 \%$ tê femijève pēr tê cilèt kishte informacion u evidentua ulja e oreksit kurse ulja e peshés trupore ishte e pranishme nē $98.1 \%$ të femijëve për tē cilët kishte informacion. Nuk u evidentuan diferenca statistikisht domethënëse të proporcioneve të fëmijëve me poliuri, polidipsi dhe ndryshime tê oreksit dhe peshës midis fëmijëe me DMT1 me KAD dhe pa KAD. Megjithatë, né cdo rast domethēnia klinike sugjeron se midis fémijêve me DMT1 me KAD proporcionet qé paraqitēn poliuri, polidipsi, ulje të oreksit dhe ulje tē peshës trupore ishin gjithnjë mẽ të larta sesa proporcionet përkatęse midis fëmijẽve me DMT1 pa KAD.


Variabli	Total	Lloji i diabetit tip 1		Vlerae   P-sé
		DMT1   KAD		
	$1(0.7)^{2}$	$0(0.0)$	$1(2.1)$	0.315
Polidipsi   Jo	$148(99.3)$	$102(100.0)$	$46(97.9)$	

[^4]| P0 | $148(99.3)$ | $102(100.0)$ | $46(97.9)$ |  |
| :--- | :--- | :--- | :--- | :--- |
| Variacioni i oreksit |  |  |  |  |
| Ngritje | $29(43.3)$ | $20(40.8)$ | $9(50.0)$ | 0.689 |
| Ulje | $37(55.2)$ | $28(57.1)$ | $9(50.0)$ |  |
| Ulje dhe ngritje | $1(1.5)$ | $1(2.0)$ | $0(0.0)$ |  |
| Variacioni i peshës |  |  |  |  |
| Ngritje | $2(1.9)$ | $1(1.3)$ | $1(3.4)$ | 0.336 |
| Ulje | $106(98.1)$ | $78(98.7)$ | $28(96.0)$ |  |

Pêr tê giithẻ kèta tregues mè lart, nuk u vunê re diferenca statistikisht domethënēse guinore apo moshore (të dhënat nuk paraqiten në tabela!).
Tabela 4.11 paraqet tẻ cthennat te tjera lidhur me kuadrin klinik te fémijêve me DMT1 té pērfshirë nē studimL. Simptoma më e shpeshtë ishte dobësia e përgiithshme (e raportuar né $86.8 \%$ te rasteve), pasuar nga të vjellat ( $18.5 \%$ ), eneurezis nokturna ( $17.8 \%$ ) dhe dhimbjet abdominale ( $9.9 \%$ ), kurse dhimbja e kokës dhe diarrea u raportuan nga 4.6\% đhe $2.6 \%$ e fèmijẽve me DMT 1, përkatẽsisht. Në tę gjitha rastet, prevalenca e shenjave dhe simptomave ishte mê e lartë midis femijevve me DMT1 me KAD sesa midis atyre me DMT1 pa KAD, për eneurezis noktuma, dobësiné e përgjithshme dhe të vjellat, këto diferenca midis fèmijěve me dhe pa KAD ishin statistikisht domethënêse (P<005).

Tabela 4.11. Paragitia te tjewn klinike e sïmundjes sipar Ilejit te dabetit DMTI

Variabli	Total	Lloji i diabetit tip 1		Vlera e   P-se ${ }^{1}$   KAD
Dobësi, lodhje, pafuqi   Jo   Po	$27(17.8)$	$26(25.2)$	$1(2.0)$	80.001
Dhimbje koke   Jo	$20(13.2)$	$7(6.8)$	$13(26.5)$	0.002
Po	$132(86.8)$	$96(93.2)$	$36(73.5)$	
Konstipacion   Jo	$145(95.4)$	$98(95.1)$	$47(95.9)$	1.000

[^5]| Po | $5(3.3)$ | $5(4.9)$ | $0(0.0)$ |  |
| :--- | :--- | :--- | :--- | :--- |
| Dhimbje abdominale |  |  |  |  |
| Jo | $137.90 .1)$ | $91(88.3)$ | $46(93.9)$ | 0.388 |
| Po | $15(9.9)$ | $12(11.7)$ | $3(6.1)$ |  |
| Të vjella | $123(81.5)$ | $77(75.5)$ | $46(93.9)$ | 0.007 |
| Jo | $28(18.5)$ | $25(24.5)$ | $3(6.1)$ |  |
| Po |  |  |  |  |
| Diarre | $148(97.4)$ | $99(96.1)$ | $49(100.0)$ | 0.306 |
| Jo | $4(2.6)$ | $4(3.9)$ | $0(0.0)$ |  |
| Po |  |  |  |  |

Për tè githè keta tregues mé lart, nuk u vunè re diferenca statistikisht domethěněse gjinore apo moshore (tė dhënat nuk paraqiten në tabela!)
Tabela 4.12 paraqet tê chēnat te tjera lidhur me kuadrin klinik te femijeve me DMT1 te pérfishirĕ nê studim. Shenja mé e shpeshtẽ ishte eré aceton (e raportuar nẻ $38.8 \%$ tę rasteve), pasuar nga distresi respirator kusmaul ( $29.8 \%$ ), dispnea ( $29.6 \%$ ), pérgjumja $(24.3 \%)$, ręnkimet ( $23 \%$ ), konfizioni dhe kandidoza oral ( $11.8 \%$ ). Nê tê gjitha rastet, prevalenca e shenjave dhe simptomave ishte me e larte midis fèmijêve me DMT1 me KAD sesa midis atyre me DMT1 pa KAD; për erën e acetonit, distresin respirator kusmaul, rënkimet, dispnené, perrgjumjen the konfizionin keto diferenca midis fermijēve me dhe pa KAD ishin statistikisht domethēnëse ( $\mathrm{P}<0.05$ ).

Tabela 1.12. Paraqitjate tjera kilinike e sëmundjes sipas Hojit tr diabetit DMT1 (vachadim)

Variabli	Total	Lloji i diabetit tip 1		Vlera eP-sërer
		DMT1 me KAD	DMT1 pa KAD	
Kandidoza orale   Jo $\mathrm{P}_{0}$	$\begin{aligned} & 134 \\ & (88.2)^{2} \\ & 18(11.8) \end{aligned}$	$\begin{aligned} & 88(85.4) \\ & 15(14.6) \end{aligned}$	$\begin{aligned} & 46(03.9) \\ & 3(6.1) \end{aligned}$	0.181
Vaginit monilial Jo Po	$\begin{aligned} & 148(97,4) \\ & 4(2.0) \end{aligned}$	$\begin{aligned} & 100 \\ & 97.1) \\ & 3(2.9) \end{aligned}$	$\begin{aligned} & 48(98.0) \\ & 1(2.0) \end{aligned}$	1.000
Infeksione rekurente të lëkurës,				0.713

[^6]| traktit urinar dhe respirator <br> Jo <br> Po | $\begin{aligned} & 144(94.7) \\ & 8(5.3) \end{aligned}$ | $\begin{aligned} & 98(95.1) \\ & 5(4.9) \end{aligned}$ | $\begin{aligned} & 46(93.9) \\ & 3(6.1) \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Erë aceton <br> Jo <br> Po | $\begin{aligned} & 93 \text { (61.2) } \\ & 59(38.8) \end{aligned}$ | $\begin{aligned} & 47(45.6) \\ & 56(54.4) \end{aligned}$ | $\begin{aligned} & 46(93.9) \\ & 3(6.1) \end{aligned}$ | $<0.001$ |
| Distres respirator kusmaul Jo Po | $\begin{aligned} & 106(70.2) \\ & 45(29.8) \end{aligned}$ | $\begin{aligned} & 57(55.9) \\ & 45(441) \end{aligned}$ | $\begin{aligned} & 49 \\ & (100.0) \\ & 0(0.0) \end{aligned}$ | $<0.001$ |
| $\begin{aligned} & \text { Rënkime } \\ & \text { Jo } \\ & \text { Po } \end{aligned}$ | $\begin{aligned} & 117(77.0) \\ & 35(23.0) \end{aligned}$ | $\begin{aligned} & 68(65.0) \\ & 35(34.0) \end{aligned}$ | $\begin{aligned} & 49 \\ & (100.0) \\ & 0(0.0) \end{aligned}$ | 40.001 |
| $\begin{aligned} & \text { Dispne } \\ & \text { Jo } \\ & \text { Po } \end{aligned}$ | $\begin{aligned} & 107(70.4) \\ & 45(29.6) \end{aligned}$ | $\begin{aligned} & 58(56.3) \\ & 45(43.7) \end{aligned}$ | $\begin{aligned} & 49 \\ & (100.0) \\ & 0(0.0) \end{aligned}$ | $<0.001$ |
| $\begin{aligned} & \text { Përgiumje } \\ & \text { Jo } \\ & \text { Po } \end{aligned}$ | $\begin{aligned} & 115(75.7) \\ & 37(24.3) \end{aligned}$ | $\begin{aligned} & 67(65.0) \\ & 36(35.0) \end{aligned}$ | $\begin{aligned} & 48(98.0) \\ & I(2.0) \end{aligned}$ | $<0.001$ |
| $\begin{aligned} & \text { Konfuzion } \\ & \text { Jo } \\ & \text { Po } \end{aligned}$ | $\begin{aligned} & 130(85.5) \\ & 22(14.5) \end{aligned}$ | $\begin{aligned} & 81(78.6) \\ & 22(21.4) \end{aligned}$ | $\begin{aligned} & 49 \\ & (100.0) \\ & 0(0.0) \end{aligned}$ | < 0.001 |
| Edemë cerebrale/koma <br> Jo <br> Po | $\begin{aligned} & 149(98.0) \\ & 3(2.0) \end{aligned}$ | $\begin{aligned} & 100 \\ & (97.1) \\ & 3(2.9) \end{aligned}$ | $\begin{aligned} & 49 \\ & (100.0) \\ & 0(0.0) \end{aligned}$ | 0.551 |

Pęr tẽ githẻ̉ kēta tregues mề lart, nuk u vunê re diferenca statistikisht domethěnēse ginore (tẻ dhẻnat nuk paraqiten né tebela!).
Ndērkohē, u vunë re disa diferenca moshore statistikisht domethēnëse, të cilat paraqiten ně Tabelën 4.13 nẽ vijim. Kęshtu, vihet re njè ulje statistikisht domethěnẽse e prevalencēs sé kandidozēs orale me rritjen e moshēs sè fémijēve me DMT1 ( $29 \%$ tek fèmijèt 0-4 vjeç, nẻ 9.8\% tek fèmijęt 5-9 vjeç dhe 5\% tek fèmijĕt $10-14$ vjeç, $\mathrm{P}-0.003$ ). Tendenca tē ngjashme u evidentuan edhe lidhur me distresin respirator kusmaul qē u ul nga $46.7 \%$ tek fèmijĕt 0.4 vję̧ në $31.1 \%$ dhe $20 \%$ tek fèmijèt $5-9$ vjeç đhe $10-14$ vjeç, pêrkatēsisht ( $\mathrm{P}=0.032$ ). Po kēshtu, prevalenca e rënkimeve, dispnesē dhe edemēs
 vjeç krahasuar me femijēt e grup-moshave të tjera (Tabela 13). Prevalenca e këtyre giendjeve klinike rezultoi teٌ kishte trend linear statistikisht domethéness ( $\mathrm{P}<0.05$ ) nê lidhje me moshěn (domethěně, me rritjen e mosh's se femijëve me DMTI ulet prevalenca e kětyre giendjeve klinike).


Variabli	Mosha			$\begin{array}{\|l} \hline \text { VIera e P- } \\ \mathrm{se}^{1} \end{array}$
	$0-4$ vjec	5-9 yjec	10-14 vjec	
```Kandidoza orale Jo Po```	$\begin{aligned} & 22(71.0)^{2} \\ & 9(29.0) \end{aligned}$	$\begin{aligned} & 55(90.2) \\ & 6(9.8) \end{aligned}$	$\begin{aligned} & 57(95.0) \\ & 3(5.0) \end{aligned}$	0.003
Distres respirator kusmaul Jo Po	$\begin{aligned} & 16(53.3) \\ & 14(46.7) \end{aligned}$	$\begin{aligned} & 42(68.9) \\ & 19(31.1) \end{aligned}$	$\begin{aligned} & 48(80.0) \\ & 12(20.0) \end{aligned}$	0.032
Rënkime Jo Po	$\begin{aligned} & 17(54.8) \\ & 14(45.2) \end{aligned}$	$\begin{aligned} & 48(78.7) \\ & 13(21.3) \end{aligned}$	$\begin{aligned} & 52(86.7) \\ & 8(13.3) \end{aligned}$	0,003
Pispne Jo Po	$\begin{aligned} & 15(48.4) \\ & 16(51.6) \end{aligned}$	$\begin{aligned} & 44(72.1) \\ & 17(27.9) \end{aligned}$	$\begin{aligned} & 48(80.0) \\ & 12(20.0) \end{aligned}$	0.007
```Edemë cerebrale/koma Jo Po```	$\begin{aligned} & 28(91.3) \\ & 3(9.7) \end{aligned}$	$\begin{aligned} & 61(100.0) \\ & 0(0.0) \end{aligned}$	$\begin{aligned} & 60(100.0) \\ & 0(0.0) \end{aligned}$	0.003

### 4.3 KRAHASIMI I PARAMETRAVE TË NDRYSHËM MIDIS FËMIJËVE ME DMT1 ME KAD DHE FËMIJË ME DMT1 PA KAD

Tabela 4.14 paraqet krahasimin e tẽ dhenave bazé-sociodemografike te̊ pjesěmarrésve sipas pranisê dhe mungesès sê KAD. Mosha mesatare né diagnozê e fèmijẽve me DMT1 me KAD èshtẻ nề měnyrè domethénẻse me e ulèt sesa e fèmijêve me DMTI pa KAD. Po kēshtu, pērqindjaa e femrave êshtë në mënyrè domethēnëse më e lartê midis fêmije̊ve me DMT1 me KAD sesa midis atyre pa KAD. Diferencat sipas vendbanimit the grup-moshës nuk rezultuan domethēnēse statistikisht Megiithate, tendenca ështē qē grupi 0-4 vjeç zē një përçindje gati dy herē mē̆ të lartë tek fëmijët me DMT1 me

[^7]KAD sesa tek ata pa $K A D$.

Tabela 4.14. Te dhenct socio-demografike te fimijève ne stutim sipas llonit to DMATI

Variabli	Lloji i diabetit tip 1		Vlera e
	DMT1 me KAD	DMT1 pa KAD	P-së

Tabela 4.15 paraqet krahasimin e kohězgjatjes se shenjave dhe simptomave (koha nga fillimi i simptomave deri nè momentin e diagnozës) midis fèmijève me DMTI me dhe pa KAD. Ndryshimi i kohẽzgiatjes mesatare té shenjave dhe simptomave midis fèmijève me dhe pa KAD nuk suhte domethěnës nga ana statistikote, por sidogofte đomethẻnia klinike sugjeron se kjo kohé eshté reth 4 dite mé e larté midis fêmijeve me DMT1 me KAD.

Tabela 4.15 Kahãziajla mesctave e shenjave dfe simptomase sipas Hojit te DMT]

Variabli	Lloji i diabetit tip 1		Vlera e   P-së
	DMT1 me KAD	DMT1   KAD	

[^8]Tabela 4.16 paraqet krahasimin e historisë familjare për diabet dhe infeksioneve paraprirěse midis femijève me DMT1 me dhe pa KAD. Vihet re qëte̊ gjitha diferencat janě jo domethëněse statistikisht. Megjithatě, domethẽnia klinike sugieron se proporcioni i atyre me histori familjare për DMT1 dhe infeksione parapriresse êshtê mě i larté midis fémijève me DMT1 me KAD, kurse trendi i kundërt vihet re lidhur me historinē familjare për DMT2.

Tabela 416. Historia fanilliave pür clabet abe inteksionet paraprisèse af Ampjeve ne studim sipas Hojit te DMTI

Variabli	Lloji i diabetit tip 1		Vlcra c
	DMT1 me KAD	DMT1 pa KAD	P-së ${ }^{1}$
Histori familjare për DMT1	$85(82.5)$	$43(87.8)^{2}$	0.482
Jo	$18(17.5)$	$6(12.2)$	
Po	$87(84.5)$	$38(77.6)$	0.364
Histori familjare për DMT2	$16(15.5)$	$11(22.4)$	
Jo	$76(73.8)$	$40(81.6)$	0.316
Po	$27(26.2)$	$9(18.4)$	
Infeksione paraprirése			
Jo			
Po			

Tabela 4.17 paraqet krahasimin e vlerave mesatare te disa parametrave laboratorike midis femijeve me DMT 1 me dhe pa KAD.
Vlerat mesatare tę glicemisè dhe triglicerideve janē nẽ mênyrè domethěnēse mê tê larta midis fèmijêve me KAD krahasuar me fémijët pa KAD kurse trendi i kundërt (me domethěnie statistikore) u evidentua lidhur me pH dhe HCO3. Diferencat e tjera rezultuan jo domethënëse nga ana statistikore.

Tabela 4. 17 . Krahasini i i diva parametrave laboraterike sipas Hojit t D DMT7

Parametri laboratorik	Lloji i diabetit tip 1		Vlera e P-sëe3
	DMT1 me KAD	DMI1 pa KAD	
Glicemia	$513.2 \pm 193.2$	$386.5 \pm 138.3^{4}$	$<0.001$
Azotemia	$29.8 \pm 16.7$	$29.3 \pm 10.2$	0.854

[^9]| Kreatinemia | $1.6 \pm 6.99$ | $0.7 \pm 0.2$ | 0.216 |
| :--- | :--- | :--- | :--- |
| Natremia | $131.4 \pm 6.9$ | $133.3 \pm 6.5$ | 0.186 |
| Kalemia | $4.0 \pm 0.5$ | $4.1 \pm 0.4$ | 0.445 |
| $\mathbf{p H}$ | $7.2 \pm 0.1$ | $7.4 \pm 0.1$ | $<0.001$ |
| HCO3 | $8.7 \pm 5.4$ | $19.9 \pm 4.5$ | $<0.001$ |
| C-peptidi | $0.4 \pm 1.1$ | $0.4 \pm 0.3$ | 0.930 |
| GAD65 | $6.3 \pm 13.5$ | $12.6 \pm 28.6$ | 0.289 |
| IA-2 | $5.1 \pm 3.8$ | $3.7 \pm 5.9$ | 0.410 |
| Trigliceride | $217.5 \pm 189.9$ | $118.2 \pm 55.7$ | 0.001 |
| Kolesterol | $169.3 \pm 55.6$ | $161.9 \pm 42.4$ | 0.523 |
| LDL | $193.9 \pm 680.1$ | $93.2 \pm 35.5$ | 0.362 |
| HDL | $37.4 \pm 13.1$ | $42.9 \pm 11.9$ | 0.128 |

Nê studimin tonè rezultoi se $71.26 \%$ e pacientëve rezultuan pozitiv pĕr acaanti GAD65 dhe $86.11 \%$ rezultuan pozitiv pěr ac anti IA2. Dhe nuk rezultoi staistikisht domehtěněse midis fèmijēve me DMT1 me dhe pa KAD.
 evidentuan diferenca gjinore statistikisht domethēnëse. Tek vajzat me DMT1 niveli
 djenve me DMT1.


Parametri laboratorik	Gjinia		Vlera e P-së
	Mashkull	Femër	
Kolesterol	$154.3 \pm 39.4^{1}$	$183.8 \pm 61.5$	$0.023^{2}$
LDL	$80.9 \pm 33.5$	$255.4 \pm 815.2$	0.038

Ne T'abelën 4.19 paraqiten té dhènat lidhur me tre parametrat e vetëm për tê cilêt u evidentuan diferenca moshore statistikisht domethënëse. Niveli mesatar i kreatinemisë dhe C-peptidit rezultoi nè ményrẻ domethëněse mè i lartè tek fèmijêt $5-9$ vjeç, kurse niveli mesatar i natremisê shfaqi një rritje monotone me ritjen e mcohëss sè fèmijëve me DM1 dhe kêto diferenca rezultuan statistikisht domethèněse ( $\mathrm{P}<0.05$ ).

[^10]Tabela 4.19. Krahasimi i disaparametrave laboratorikỉ sipas moshĕs së fümijĕve me DMTI

Variabli	Mosha			$\begin{aligned} & \text { Vlera e } \\ & \text { P-së } \end{aligned}$
	0.4 vjeç	5-9 vjeç	10-14 vjeç	
Kreatinemia	$0.7 \pm 0.2^{1}$	$1.9 \pm 90$	$1.2 \pm 2.7$	$0.002^{2}$
Natremia	129.6 $\pm 6.3$ *	$130.9 \pm 4.9$	$134.1 \pm 8.5$	0.048
C-peptidi	$0.2 \pm 0.1$	$0.5 \pm 1.4$	$0.4 \pm 0.2$	0.015

Tabela 4.20 paraqet krahasimin e té dhënave lidhur me pH vencz dhe bikarbonatet serike midis fèmujēve me DMT1 me KAD, Prevalenca c KAD të rēndê, tê moderuar đhe tê lehtẻ ẻshtể nề měnyre domethênêse mẻ e lartè midis fèmijëve me DMT1 me KAD krahasuar me féniijēt pa KAD, si në bazē tê nivelìt të pH ashtu edhe nē bazë të nivelit të bikarbonateve.

Tabela 4.20. Ashperssiae KAD bazuar ne nivelin e pH ajer HCO3 sipas Hojizt we DMT1

Variabli	Total	Lloji i diabetit tip 1		$\begin{aligned} & \text { Vlera e } \\ & \text { P-se } \end{aligned}$
		DMT1 me KAD	DMT1 pa KAD	
```Ashpërsia e KAD bazuar në pH venoz E rëndë̈ (<7.1) E moderuar (7.1-7.2) E lehtë (7.21-7.3) Normal (7.31-7.5)```	$\begin{aligned} & 17(32.1)^{3} \\ & 7(13.2) \\ & 13(24.5) \\ & 7(30.2) \end{aligned}$	$\begin{aligned} & 17(38.6) \\ & 7(15.9) \\ & 13(29.5) \\ & 7(15.9) \end{aligned}$	$\begin{aligned} & 0(0.0) \\ & 0(0.0) \\ & 0(0.0) \\ & 9(100.0) \end{aligned}$	$<0.001^{4}$
```Ashpërsia e KAD bazuar në HCO3 serike E rëndè (<5) E moderuar (5-10) E lehtë (10.1-15) Normal (22-26)```	$\begin{aligned} & 15(28.8) \\ & 15(28.8) \\ & 18(34.6) \\ & 4(7.7) \end{aligned}$	$\begin{aligned} & 15(34.9) \\ & 15(34.9) \\ & 12(27.9) \\ & 1(2.3) \end{aligned}$	$\begin{aligned} & 0(0.0) \\ & 0(0.0) \\ & 0(0.0) \\ & 3(100.0) \end{aligned}$	<0.001**

Nuk u vunè re diferenca statistikisht domethěnesse gjinore apo moshore lidhur me kêta dy tregues (te dhënat nuk paragiten nè tabela!).

[^11]
### 4.4 ECURIA NË KOHË E PARAMETRAVE LABORATORIKË, SIPAS LLO.IIT TË DMT1

### 4.4.1 Ecuria e HbA1c në kohë sipas grupeve të studimit

Tabela 4.21 paraqet ecurine e vlerave tẻ hemoglobiněs se glukozuar (HbAlc) në pika kohore të ndryshme, midis fèmijëve me DMT1 me KAD dhe pa KAD. Sic mund tē vihet re, nuk ka ndryshime statistikisht domethënēse pērsa i përket vlerave mesatare të HbAl c midis fëmijḕve điabetik me dhe pa KAD nē diagnozë dhe në pika tē ndryshme kohore pas vendosjes sē diagnozēs.

Tabela 4.21. Krahasimi i vlevave të glicemisz ne kohez, sipas Ilej̈t te DMTI

Hemoglobina   glukozuar (HbA1c)	e	Lloji i diabetit tip 1	Vlerae         P-së
	$11.9 \pm 2.0^{1}$	$11.1 \pm 2.4$	
Pas 3 muajsh	$7.5 \pm 1.2$	$7.9 \pm 1.5$	0.358
Pas 6 muajsh	$8.3 \pm 1.7$	$7.5 \pm 1.2$	0.121
Pas 9 muajsh	$8.1 \pm 1.3$	$7.8 \pm 1.2$	0.672
Pas 12 muajsh	$8.7 \pm 1.6$	$9.0 \pm 2.1$	0.761
Pas 15 muajsh	$8.3 \pm 1.3$	$8.4 \pm 1.7$	0947
Pas 18 muajsh	$8.4 \pm 1.2$	$8.7 \pm 1.2$	0.597
Pas 21 muajsh	$9.4 \pm 2.7$	$8.6 \pm 1.3$	0.487
Pas 24 muajsh	$8.6 \pm 1.8$	$8.5 \pm 1.6$	0.593
Pas 27 muajsh	$9.9 \pm 2.3$	$8.2 \pm 1.6$	0.126
Pas 30 muajsh	$8.8 \pm 1.8$	$8.1 \pm 0.4$	0.320
Pas 33 muajsh	$9.4 \pm 1.8$	$1.9 \pm-$	0.683
Pas 36 muajsh	$9.5 \pm 2.2$	$8.8 \pm 1.8$	0.474
Pas 39 muajsh	$9.0 \pm 2.8$	$8.9 \pm 1.8$	1.000
Pas 42 muajsh	$9.5 \pm 2.3$	$8.3 \pm-$	0.431
Pas 45 muajsh	$9.7 \pm-$	$2.6 \pm-$	-
Pas 48 muajsh	$9.0 \pm-$	$1.7 \pm-$	-
Pas 51 muajsh	$8.8 \pm-$	$1.9 \pm-$	-
Pas 54 muajsh	$9.1 \pm-$	$1.8 \pm-$	-
Pas 57 muajjsh	$8.5 \pm-$	$2.0 \pm-$	-

Vlerat mesatare tê HbAlc-sě pârgiatẻ kohess tek fémijèt diabetikẽ̃ me dhe pa KAD paraqiten ne Grafikun ne̊ vijim.

[^12]

Nga Grafiku mund te evidentohet se ecuria e HbAlc përgiatẻ kohes äshtë mê e favorshme pêr fèmijët diabetikè pa KAD krahasuar me fèmijêt diabetikë me KAD, dake qēnẻ se tek fëmijêt diabetike pa KAD niveli mesatar i HbAI c-sẽ eैshtẽ vazhdimisht mê i ulèt sesa tek fémijēt me KAD, kurse tek fèmijēt me KAD niveli mesatar i kētij parametri qêndron pak a shumẻ konstant por nẻ rivele mjaft tẻ larta (midis 8-9\%).

### 4.4.2 Shfaqja e sëmundjeve autoimune bashkëshoqëruese

Tabela 4.22 paraqet shfacjen e sëmundjeve autoimune bashkẽshoqẽruese t¿ DMT1 gjaté peniudhës së studimit. Në momentin e diagnozēs së DMT 1 për herë të parë $16.45 \%$ (25/152) fëmijè kishin sémundje autoimune shoqẽruese: $21 / 152$ (13.81\%) femije kishin semmundje autoumine te gi.tiroides dhe $4 / 152$ (2.63\%) SC. Prej ketyre $52 \%$ u prezantuan me KAD; $68 \%$ ishin femra dhe predominonte grup moshes $5-9$ vjeç (15/24). Ne momentin e diagnozẻs se DMTI bazuar nể vlerěn e rritur te己 antikorpeve anti antitTGIgA dhe anti-tTG $\operatorname{IgG}, 2.63 \%$ rezultuan me SC. Semundja e SC u shfaq në 2.54 vitet e para te diagnozęs. Po kęshtn edhe SAT u shfaq 2.19 vitet e para pas diagnozẽs.
Midis fèmijēve nê studim vetëm 1 subjekt shfaqi SAT dhe SC ; Hashimoto 1.023 vjet edhe SC 4.11 vjet pas diagnozěs se DMT1. Në studimin tone $78.95 \%$ e femjeve shfaqen SC 2.54 vjet pas diagnozezs se DMT1.
 periudthès së studivil

	Total $\mathrm{Nr} / \%$	SA ne diag. e DMII	SA post diag. DMT1
Shpeshtutsia	$25.65 \%$ (39/152)	$16.45 \%$ (28/152)	$9.21 \%(14 / 152)$
Gjinia   Femer Mashkull	$\begin{array}{ll} 64.1 \% & (25 / 39) \\ 35.9 \% & (14 / 39) \end{array}$	$\begin{gathered} 17 \\ 8 \end{gathered}$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$
$\begin{aligned} & \text { Survejancé } 5 \text { vjeçare } \\ & \text { SAT } \\ & \text { CD } \\ & \text { SAT }+ \text { CD } \end{aligned}$			1
SAT   Fenra   Meshkuj		$\begin{aligned} & 21 / 152(13.81 \%) \\ & 15 / 21 \quad(71.53 \%) \\ & 6 / 21 \quad(28.47 \%) \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & 2 \end{aligned}$
CD   Femra   Mestikuj		$\begin{gathered} 4 / 152(2.63 \%) \\ 2 \\ 2 \end{gathered}$	$\begin{aligned} & 8 \\ & 4 \\ & 4 \end{aligned}$
TSH>5	$6(23 \%)$		
Ac.anti TPO	20 (77\%)		
KAD	13/25 (52\%)		
TPO+funksion normal	16/20 (80\%)		
Mosha mesatare post di SAT   CD	agnose te DMT11		219 vjet   2.54 vjet

### 4.4.3 Ecuria e TSH-së në kohë sipas grupeve të studimit

Tabela 4.23 paraqet ecurinē e vlerave tē TSH nẽ pika kohore tē ndryshme, midis fèmijevve me DMTI me KAD dhe pa KAD. Sio mund tẽ vihet re, mak ka ndryshime statistikisht domethënëse përsa i përket vlerave mesatare te TSH midis femnijëve dabetikê me dhe pa KAD nẽ pika tẽ ndryshme kohore pas vendosjes sê diagnozês.

Tabela 4.23. Krahaximi İ vlerase tẽ TSH në kohë, sipas Ilojit te DMTI

TSH	Lloji i diabetit tip I   Vlerae   P-sé		
	DMT1 me KAD	DMT pa   KAD	
Né mometin fillestar	$2.7 \pm 1.5^{1}$	$3.5 \pm 3.7$	$0.693^{2}$
Pas 3 muajsh	$2.6 \pm 0.7$	$4.4 \pm 2.0$	0.079
Pas 6 muajsh	$2.8 \pm 1.7$	$2.9 \pm 3.1$	0.670
Pas 9 muajsh	$1.9 \pm 0.8$	$3.9 \pm 2.3$	0.138
Pas 12 muajsh	$2.2 \pm 1.0$	$3.1 \pm 1.5$	0.157
Pas 15 muajsh	$2.3 \pm 0.9$	$3.8 \pm 2.3$	0.513
Pas 18 muajsh	$3.6 \pm 0.8$	$3.3 \pm 2.7$	0.361
Pas 21 muajsh	$1.9 \pm 0.6$	$1.8 \pm-$	0.770
Pas 24 muajsh	$3.9 \pm 2.7$	$2.6 \pm 1.4$	0.909
Pas 27 muajsh	$3.4 \pm 0.8$	$2.9 \pm 2.4$	1.000
Pas 30 muajsh	$2.1 \pm 1.1$	$2.3 \pm 2.8$	1.000
Pas 33 muajsh	$3.5 \pm 1.5$	$5.3 \pm-$	0.221
Pas 36 muajsh	$3.0 \pm 1.1$	$4.7 \pm 3.7$	0.569
Pas 39 muajsh	$1.2 \pm 1.0$	$5.9 \pm 2.7$	0.053
Pas 42 muajsh	$1.9 \pm 0.7$	-	-
Pas 45 muajsh	$1.1 \pm-$	-	-
Pas 48 muajsh	$1.7 \pm 0.4$	-	-
Pas 51 muajsh	-	-	-
Pas 54 muajsh	-	-	-
Pas 57 muajsh	-	-	-

Vlerat mesatare tè TSH-sè përgjatè kohës tek femijët diabetikë me dhe pa KAD paraqiten në Grafikun nẻ̉ vijim.

[^13]

Nga Grafiku mund të evidentohet se ecuria e TSH përgjatë kohës ështē nē trend nitēs tek fermijest diabetike pa KAD krahasuar me fèmijèt diabetikě me KAD, tek tê cilět vihet re tendenca c kundërt (nē rënie)

### 4.4.4 Ecuria e FT4-ës në kohë sipas grupeve të studimit

Tabela 4.24 paraqet ecurinê e vlerave tẽ FT4-ěs nẻ pika kohore tē ndryshme, midis fèmijëve me DMT1 me KAD dhe pa KAD. Sic mund te vihet re, nuk ka ndryshime statistikisht domethěněse pêrsa i përket vlerave mesatare tè FT4-ěs midis fèmijëve diabetikẽ me dhe pa KAD ně pika tẽ ndryshme kohore pas vendosjes së diagnozěs.

Tabela 4.24. Krainasimi i vieraw te FT4-ès nè kohe", sipas loftit te DMTI

FT4	Lloji i diabetit tip 1		Vlera e P-së
	DMT1 me KAD	DMT1 pa KAD	
Në mometin fillestar	$11.2 \pm 4.91$	$11.1 \pm 4.2$	$0.829^{2}$
Pas 3 muajsh	$12.4 \pm 7.2$	$11.6 \pm 1.8$	0.699
Pas 6 muajish	$7.9 \pm 6.6$	$11.8 \pm 8.1$	0.602
Pas 9 muajsh	$6.2 \pm 9.1$	$11.3 \pm 3.1$	0.513
Pas 12 muajsh	$8.5 \pm 6.0$	$12.5 \pm 3.8$	0.427
Pas 15 muajsh	$15.2 \pm 1.4$	$13.2 \pm 3.5$	0.439
Pas 18 muajsh	$10.2 \pm 1.0$	$12.8 \pm 3.6$	0.602
Pas 21 muajsh	$8.6 \pm 8.2$	$13.3 \pm \cdot$	0.480

[^14]| Pas 24 muajsh | $13.3 \pm 2.2$ | $5.8 \pm 6.7$ | 0.094 |
| :--- | :--- | :--- | :--- |
| Pas 27 muajsh | $11.1 \pm 1.4$ | $2.9 \pm 2.7$ | 0.050 |
| Pas 30 muajsh | $11.0 \pm 1.8$ | $8.9 \pm 11.1$ | 1.000 |
| Pas 33 muajsh | $1.0 \pm-$ | $6.7 \pm-$ | 0.317 |
| Pas 36 muajsh | $9.8 \pm 5.8$ | $8.9 \pm 0.9$ | 0.296 |
| Pas 39 muajsh | $11.4 \pm 9.8$ | $5.7 \pm 6.5$ | 0.248 |
| Pas 42 muajsh | $12.2 \pm 1.1$ | - | - |
| Pas 45 muajsh | - | - | - |
| Pas 48 muajsh | $10.1 \pm 6.4$ | - | - |
| Pas 51 muajsh | $20.7 \pm-$ | - | - |
| Pas 54 muajsh | $11.4 \pm-$ | - | - |
| Pas 57 muajsh | - | - | - |

 paraqiten ne Grafikun 4.3.


 rités tek fémijēt diabetikë me KAD krahasuar me fèmijet diabetikë pa KAD.

### 4.4.5 Ecuria e TPO-së në kohë sipas grupeve të studimit

Tabela 25 paraqet ecurinê e vlerave të TPO-së nee pika kohore tè ndryshme, midis femijëve me DMT1 me KAD dhe pa KAD. Sic mund te vihet re, nuk ka ndryshime statistikisht domethēnēse përsa i përket vlerave mesatare tē TPO-së midis fëmijëve
diabetikè me dhe pa KAD nê pika tę ndryshme kohore pas vendosjes sẻ diagnoż̉s.


TPO	Lloji i diabetit tip 1		Vlera e   P-së
	DMT1 me KAD	DMT1 pa KAD	$0.224^{2}$
Në mometin fillestar	$166.9 \pm 802.5^{1}$	$207.0 \pm 425.8$	0.053
Pas 3 muajsh	$8.8 \pm 4.4$	$171.0 \pm 84.8$	0.806
Pas 6 muajsh	$1818 \pm 3631$	$120.3 \pm 149.3$	0.245
Pas 9 muajsh	$230.9 \pm 478.2$	$10.4 \pm 12.4$	0.117
Pas 12 muajsh	$226.9 \pm 788.0$	$534.2 \pm 661.3$	0.392
Pas 15 muajsh	$9.7 \pm 8.9$	$765.1 \pm 1137$	0.230
Pas 18 muajsh	$1011 \pm 1798$	$709.4 \pm 935.7$	0.617
Pas 21 muajsh	$440.3 \pm 869.9$	$2.3 \pm-$	0.647
Pas 24 muajsh	$1345 \pm 2234$	$93.2 \pm 154.1$	0.221
Pas 27 muajsh	$2.6 \pm-$	$3489 \pm 4449$	0.127
Pas 30 muajsh	$1487 \pm 2989$	$5.7 \pm-$	0.564
Pas 33 muajsh	$2450 \pm 4229$	$517.5 \pm 413.6$	-
Pas 36 muajsh	$238.9 \pm 318.7$	-	-
Pas 39 muajsh	$353.0 \pm 579.4$	-	-
Pas 42 muajsh	$1424 \pm 2461$	-	-
Pas 45 muajsh	$57.0 \pm-$	-	-
Pas 48 muajsh	$675.0 \pm-$	-	-
Pas 51 muajsh	$1012 \pm-$	-	-
Pas 54 muajsh	$216.5 \pm 189.4$	-	-
Pas 57 muajsh	-		

Vlerat mesatare tē TPO-sē përgjatë kohës tek fèmijët diabetikë me dhe pa KAD paraqiten ne Grafikun ne vijim.

[^15]


Nga Grafiku mund tē evidentohet se ecuria e TPO-së pèrgjatë kohēs êshtë relativisht e ngjashme si tek fémijęt diabetikë me KAD ashtu edhe tek fêmijet diabetikẽ pa KAD.

### 4.4.6 Ecuria e anti-tiroglobulinës në kohë sipas grupeve të studimit

Tabela 4.26 paraqet ecurine̊ e vlerave tẽ anti-tiroglobulinês nê pika kohore tê ndryshme, midis fêmijẽve me DMTI me KAD the pa KAD. Sic mund tĕ vihet re, nuk ka ndryshime statistikisht domethënēse pērsa i pèrket vlerave mesatare tê antitiroglobulinēs midis fëmijëve điabetikē me dhe pa KAD në pika të ndryshme kohore pas vendosjes se diagnozęs.

Tabeta 4.26. Krahasimi i werave ty anil-tinoglobudinits ne kohe, sipas llojit te DMTI

Anti-tiroglobulina	Lloji i diabetit tip 1		Vlera e
	DMT1 me KAD	DMT1 pa KAD	

[^16]| Pas 12 muajsh | $27.4 \pm 14.3$ | $25.2 \pm 4.9$ | 0.643 |
| :--- | :--- | :--- | :--- |
| Pas 15 muajsh | $1.5 \pm 1.9$ | $60.1 \pm 47.5$ | 0.121 |
| Pas 18 muajsh | $1795 \pm 2538$ | - | - |
| Pas 21 muajsh | $1022 \pm 1431$ | - | - |
| Pas 24 muajsh | $274.8 \pm 428.8$ | - | - |
| Pas 27 muajsh | - | - | - |
| Pas 30 muajsh | $224.6 \pm 317.4$ | - | - |
| Pas 33 muajsh | $3197 \pm-$ | - | - |
| Pas 36 muajsh | $261.3 \pm 227.0$ | - | - |
| Pas 39 muajsh | $33.9 \pm-$ | - | - |
| Pas 42 muajsh | $70.8 \pm-$ | - | - |
| Pas 45 muajsh | - | - | - |
| Pas 48 muajsh | $1.1 \pm-$ | - | - |
| Pas 51 muajsh | - | - | - |
| Pas 54 muajsh | $10.9 \pm-$ | - | - |
| Pas 57 muajsh | - | - | - |

Vlerat mesatare tē anti-tiroglobulinēs pērgjatë kohēs tek fèmijët dabetikē me dhe pa KAD paraqiten ne Grafikun né vijim.

 kohers

Nga Grafiku mund teٌ evidentohet se teٌ đhẻnat lidhur me ecuriné e anti-tiroglobuliněs
pérgjate kohès janẻ relativisht të pakta, duke mos lejuar interpretimin e arsyeshěm të tyre.

### 4.4.7 Ecuria e TG-IgA në kohë sipas grupeve të studimit

Tabela 4.27 paraqet ecurinê e vlerave tę TG-IgA nĕ pika kohore tê ndryshme, midis femijevve me DMT1 me KAD the pa KAD. Sic mund te vihet re, nuk ka ndryshime statistikisht domethěnēse perrsa i përket vlerave mesatare tê TG-lgA midis feumijëve diabetike me dhe pa KAD né pika te ndryshme kohore pas vendosjes se diagnozets.


TG-IgA	Lloji i diabetit tip 1		Vlera e P-së
	DMT1 me KAD	DMT1 pa KAD	
Në mometin fillestar	$3.8 \pm 3.7^{1}$	$2.4 \pm 1.8$	$0.066^{2}$
Pas 3 muajsh	$8.6 \pm 8.4$	$3.4 \pm 0.7$	0.564
Pas 6 muajsh	$3.8 \pm 3.2$	$2.1 \pm 1.4$	0.368
Pas 9 muajsh	$21.3 \pm 25.9$	$4.6 \pm 1.5$	0.248
Pas 12 muajsh	$6.8 \pm 9.3$	$4.9 \pm 1.6$	0.582
Pas 15 muajsh	$5.4 \pm 7.7$	$2.9 \pm 0.8$	0.439
Pas 18 muajsh	$2.6 \pm 1.5$	$3.7 \pm 3.7$	0.816
Pas 21 muajsh	$1.4 \pm 0.9$	-	-
Pas 24 muajsh	$11.1 \pm 13.4$	$4.2 \pm 1.5$	0.796
Pas 27 muajsh	$2.8 \pm 1.6$	$11.8 \pm-$	0.221
Pas 30 muajsh	$59.7 \pm 118.8$	$7.7 \pm-$	0.770
Pas 33 muajsh	$7.7 \pm 13.7$	$4.1 \pm 0.2$	0.245
Pas 36 muajsh	$3.1 \pm 1.5$	$15.0 \pm-$	0.116
Pas 39 muajsh	-	-	-
Pas 42 muajsh	$3.3 \pm 1.7$	-	-
Pas 45 muajsh	$0.3 \pm-$	-	-
Pas 48 muajsh	$60.0 \pm 123.9$	-	-
Pas 51 muajsh	$368.0 \pm-$	-	-
Pas 54 muajsh	$6.5 \pm 5.5$	-	-
Pas 57 muajsh	-	-	

Vlerat mesatare të TG-IgA përgiatë kohës tek fèmijēt diabetikē me dhe pa KAD paraqiten ne Grafikun ne vijim.

[^17]

Nga Grafiku mund tẽ evidentohet se ecuria e TG-IgA përgjatē kohës esshtë relativisht e ngjashme si tek fémijēt diabetikē me KAD ashtu edhe tek fëmijēt diabetikē pa KAD, Gjithsesi, mungesa e tè dhěnave mak lejon përftimin e njē panorame të qaatè dhe krahasimin e duhur tẻ゙ tē dy grupeve tẽ studimit lidhur me ecurinê e kêtij parametri.

### 4.4.8 Ecuria e anti-TG-IgG në kohë sipas grupeve të studimit

Tabela 4.28 paraqet ecuriné e vlerave tě anti-TG-IgG ně̆ pika kohore tè ndryshme, midis fèmijëve me DMT1 me KAD dhe pa KAD. Sic mund tê vihet re, mak ka ndryshime statistikisht domethënëse pêrsa i përket vlerave mesatare të TG-lgA midis fëmijëve diabetikę me dhe pa KAD nê pika tê ndryshme kohore pas vendosjes sê diagnozẻs.

Tabela 4.28. Araltasioni i sterave ty auti-TG-IgGin kohe, sipas Hojit il DMTI

Anti-TG-IgG	Lloji i diabetit tip 1		Vlera e   P-së
	DMT1 me KAD	DMT1 pa KAD	$0.082^{2}$
Në mometin fillestar	$4.4 \pm 5.2^{1}$	$2.9 \pm 2.5$	-
Pas 3 muajsh	-	$3.6 \pm 0.2$	0.157
Pas 6 muajsh	$3.8 \pm 1.5$	$1.2 \pm-$	0.221
Pas 9 muajsh	$33.4 \pm 40.9$	$3.0 \pm-$	-
Pas 12 muajsh	$3.8 \pm 2.9$	-	0.655
Pas 15 muajsh	$2.4 \pm 1.3$	$3.6 \pm-$	0.557
Pas 18 muajsh	$2.7 \pm 0.8$	$3.0 \pm 0.7$	-
Pas 21 muajsh	$3.5 \pm 1.4$	-	-

[^18]| Pas 24 muajsh | $7.2 \pm 11.1$ | $3.1 \pm=$ | 1.000 |
| :--- | :--- | :--- | :--- |
| Pas 27 muajsh | - | - | - |
| Pas 30 muajsh | - | - | - |
| Pas 33 muajsh | - | - | - |
| Pas 36 muajsh | - | - | - |
| Pas 39 muajsh | - | - | - |
| Pas 42 muajsh | $3.7 \pm 0.3$ | - | - |
| Pas 45 muajsh | $1.6 \pm-$ | - | - |
| Pas 48 muajsh | - | - |  |
| Pas 51 muajsh | $121.0 \pm-$ | - | - |
| Pas54 muajsh | $2.9 \pm-$ | - | - |
| Pas 57 muajsh | - | - | - |

 paraqiten ne Grafikun ne vijim.


Grufihu 4.7 Niveli mesatar i anti-TG-IgG midis fémijëve dlabetikè me dhe pa KAD, pĕrgjatĭ kohès
Nga Gratiku 4.7 mund tę evidentohet se te dhẽnat lidhur me ecurine e anti-TG-IgG perrgjatę kohěss jane̊ relativisht teٌ palta, duke mos lejuar interpretimin e arsyeshêm teٌ tyre.

### 4.5 FAKTORËT E LIDHUR ME PRANINË E KAD TEK FËMIJËT ME DMT1

### 4.5.1 Lidhja e KAD me gíninë, moshën dhe vendbanimin

Tabela 4.29 paraqet lidhjen midis pranisë sê KAD dhe ginisê dhe moshẻs sê fèmijêve diabetikē në studim. Mund të vihet re qē femrat kanë 2.24 herë mē shumë gjasa për tē qẻne tẻ prekura nga KAD krahasuar me meshluyit dhe ky ndryshim êshte domethěnés nga ana statistikore ( $\mathrm{P}=0.025$ ).
Pērsa i përket moshës, vihet re se fémijēt 0-4 vjeç kanè rreth 3 herē më shumè gjasa qē tē preken nga KAD krahasuar me fëmijēt 10-14 vjeç dhe edhe ky ndryshim ēshtē statistikisht domethënës ( $\mathrm{P}=0.038$ ). Kur mosha trajtohet si variabēl numerik (mosha nē vite) ať̌herè vihet re se pèr cdo rritje tê moshés me 1 vit, gjasat e pranisè se KAD zvogëlohen me 0.126 herë dhe ky ndryshim është domethënës nga ana statistikore ( $\mathrm{P}=0.016$ ).

Tabela 4.29. Lidhñ midis pronise se KAD tek fimijet diabetike dhe variableve te zgiedmur-Roporti i giacone (OR neatesti i Regresionit Logitotik Biag

Variabli	$\mathrm{OR}^{1}$	95\% CI ${ }^{2}$		VleraeP-ses
		Kufiri i poshtëm	Kufiri i sipërm	
Gjinia   - Mashk ull   - Femér	$\begin{aligned} & 1.0 \text { (referencë) } \\ & 2.24 \end{aligned}$	$1.11$	$4.54$	0.025
Grup-mosha   $0-4$ vjec   $5-9$ vjeç   10-14 vjeç	$\begin{aligned} & 2.97 \\ & 1.71 \\ & 1.0 \text { (referencë) } \end{aligned}$	$\begin{aligned} & 1.06 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 8.32 \\ & 3.62 \end{aligned}$	$\begin{aligned} & 0.088(2) \\ & 0.038 \\ & 0.164 \end{aligned}$
Mosha (vite)	-0.126 ${ }^{4}$			0.016
Vendbanimi Urban   Rural	$\begin{aligned} & 1.32 \\ & 1.0 \text { (referencë) } \end{aligned}$	$0.61$	$2.84$	0.484

Nga ana tjetër, lidhja midis pranisë së KAD dhe vendbanimit tē fémijēve me diabet nē

[^19]studim nuk rezultoi statistikisht domethëněse ( $\mathrm{P}>0.05$ ); sidoqofteै, duket se femijēt neै zonat urbane kanë mé shumë gjasa për të shfaqur KAD krahasuar me fëmijēt në zonat nurale.

### 4.5.2 Lidhja e KAD me kohëzgjatjen e shenjave dhe simptomave

Tabela 4.30 paraqet lidhjen midis pranisê sê KAD dhe kchëzgjatjes sé shenjave dhe
 pranisé se shenjave che simptomave gjasat e pranise së KAD rriten me 0.015 here; sidoqoftè kjo lidhje e dobēt nuk rezultoi domethënēse nga ana statistikore ( $P>0.05$ )

Tabela 4.30. Lichja midis prorisè se KAD tek finijer diabetike dhe kolyizgiaties se shrnjave dwe simptomase - Koeficheral B ngatesth I Regnestont Log istli Bona

Varlabli	Koeficienti B	Vlera e   P-ses ${ }^{2}$
Kohëzgiatja e shenjave dhe simptomave (ditë)	$0.015 \dagger \dagger$	0.179

### 4.5.3 Lidhja e KAD me historinë familjare për diabet dhe infeksionet paraprirëse

Tabela 4.31 paraqet lidhjen e pranisé sę KAD me historinè familjare pèr diabet dhe infeksioneve paraprirěse tè fèmijève diabetikè nê studim. Mund tẻ vihet re qê historia familjare pèr diabet tip 1 mit gjasat e pranisë së KAD me 1.52 herè por ky ndryshim nuk ęshte domethěness nga ana statistikore ( $\mathrm{P}>0.05$ ).
Nga ana tjetër, hustoría familjare pēr điabet tip 2 duket se ka rol mbroitës pēr praninë e KAD duke qënë se gjasat e pranisë sē KAD janē 1.56 herē mē tē vogla (1/0.6́4) midis fermijēve diabetikë me histori familjare për DMT2 krahasuar me fèmijet pa histori familjare pēr DMT2 por edhe ky ndryshim nuk ështē domethënēs nga ana statistikore ( $\mathrm{P}>0.05$ ).
Historia familjare pozitive pér DMT1 ose DMT2 i rrit gjasat e pranisë sè KAD me 6 here kurse historia familjare pozitive edhe per DMT1 edhe perr DMT2 i rrit gjasat e pranisë së KAD me 8.73 heré, por edhe kēto diferenca nuk arritēn domethërien stastikore ( $\mathrm{P}>0.05$ ).

[^20]Tabela 4.31. Lidhia mids pranise se KAD tek fémijet diabetike drye vaviableve ie zgjedfur - Raporti ì glasave (OR) nga teati i Regresionit Logizsthk Baar

Variabli	OR ${ }^{1}$	95\% C1 ${ }^{2}$		Vlera e P-sen ${ }^{3}$
		Kufiri   poshtëm i	Kufiri i sipërm	
Histori   familjare për DMT1   Jo   - $\mathrm{P}_{0}$	$\begin{aligned} & 1.0 \text { (referencë) } \\ & 1.52 \end{aligned}$	$0.56$	$4.10$	0.411
Histori   familjare pêr   DMT2   Jo   Po	$\begin{aligned} & 1.0 \text { (referencë) } \\ & 0.64 \end{aligned}$	$0.27$	$1.50$	0.300
Histori për DMT1 dhe/ose DMT2   Pa histori për DMT1 ose DMT2 Histori për DMT1 ose DMT2 Histori për DMT1 dhe DMT2	$\begin{aligned} & 1.0 \text { (referencë) } \\ & 6.00 \\ & 8.73 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.82 \end{aligned}$	$59.80$ $92.85$	$0.177(2)$ - 0.127 0.073

4.5.4 Lidhja e KAD me infeksionet virale dhe gjendje të tjera shpërthyese dhe stresin psiko-social

Tabela 4.32 paraqet lidhjen e pranise se KAD me infeksionet virale dhe giendje tee tjera shpẻrthyese dhe stresin psiko-social tê fèmijëve diabetikê nẻ studim. Duket se

[^21]infeksionet parapnirese i misin giasat e pranisè se KAD me meth 1.58 heré; githsesi edhe ky ndryshim nuk arriti donethenien statistikore ( $\mathrm{P}>0.05$ ).
Pęrsa i pèrket lidhjes sê pranisẻ sê KAD me stresin psiko-social, analiza nuk mund tê realizohej pêr shkak tẻ mungesés sẻ te dhẻnave nê njérin grup (asnję rast me stres psikosocial midis fèmijéve diabetikê pa KAD). Sidoqofte, duket se stresi psiko-social mund tę jetě njẻ faktor rreziku pèr praninẻ e KAD tek fëmijēt diabetikẻ (duke qěně se $3.9 \%$ e fèmijēve diabetikē me KAD rezultuan me stres psiko-emocional kundrejt $0 \%$ tek fêmijèt diabetike pa KAD).

Tabela 4.32. Lidhia mids pronisé se KAD tek fenijet diabetiké dre vaviablew w zgjedfur - Raporti i glasave (OR) nga testi i Regresionit Logilist kiang

Variabli	OR ${ }^{1}$	95\% CI ${ }^{2}$		Vlera e P-se ${ }^{-3}$
		$\begin{array}{\|lr\|} \hline \text { Kufiri } & \text { i } \\ \text { poshtëm } \end{array}$	Kufiri it sipërm	
Infeksione   virale dhe   giendje tē tjera   shpërthyese   Jo   Po	$\begin{aligned} & 1.0 \text { (reference) } \\ & 1.58 \end{aligned}$	$0.68$	$3.68$	0.290
Stresi psikosocial   Jo   Po	1.0 (referencé)	Nuk ka tê dhěna tę mjattueshme pēr analizẽ̛		

### 4.5.5 Lidhja e KAD me një sërë paraqitjesh klinike

Tabela 4.33 paraqet lidhjen e pranisé sê KAD me disa lloje tè paraqitjeve klinike të fèmijëve diabetikè né studim. Duket se eneurezis noktuma, doběsialodhja/pafuqia dhe tè vjellat i rrisin me 16.21 here, 4.95 heré dhé 4.98 herè, përkatësisht, gjasat e pranisẻ sẻ KAD tek fëmijët diabetikë đhe kěto ndryshime janě domethënése nga ana statistikore ( $\mathrm{P}<0.05$ ).
Kurse lidhja e KAD me faktorét e tjeré né Tabelẽn 32 muk arriti domethénien statistikcre ( $\mathrm{P}>0.05$ në cdo rast).

[^22] Ruponti i gjasw'e (OR) nga testi i Regresionit Logïstik Binar

Variabli	OR ${ }^{1}$	95\% CF ${ }^{2}$		Vlera e$\text { P-se }{ }^{3}$
		Kufiri i poshtëm	Kufiri it sipērm	
Eneurezis nokturna   Jo   Po	$\begin{aligned} & 1.0 \text { (reference) } \\ & 16.21 \end{aligned}$	$2.13$	$123.35$	0.007
Dobësi, lodhje, pafuqi Jo Po	$\begin{aligned} & 1.0 \text { (reference) } \\ & 4.95 \end{aligned}$	$1.83$	$13.40$	0.002
Dhimbje koke   Jo   Po	$\begin{aligned} & 1.0 \text { (referenca) } \\ & 1.20 \end{aligned}$	$0.22$	$6.41$	0.832
Konstipacion   Jo   P0	Nuk ka të dhėn	ërmjaftuesh	e pēr kētè a	lizê!
Dhimbje   abdominale   Jo   Po	$\begin{aligned} & 1.0 \text { (reference) } \\ & 2.02 \end{aligned}$	$0.54$	$7.52$	0.294
Tē vjella Jo Po	$\begin{aligned} & 1.0 \text { (reference) } \\ & 4.98 \end{aligned}$	$1.42$	$17.41$	0.012
Piarre   Jo   Po	Nuk ka të dhėnat të mjjaftueshme pēr kētē analizę!			

Tabela 4.34 paraqet lidhjen e pranisé se KAD me disa lloje te tjera te paraqitjeve klinike tē fèmijëve diabetikë nê studim. Duket se pramia e erēs sē acetonit dhe përgjunjes e misin me 18.27 herë dhe 25.79 herë, përkatësisht, gjasat e pranisë sẽ KAD tek fermijët diabetikē dhe këto ndryshime janē domethënēse nga ana statistikore ( $\mathrm{P}<0.05$ ). Duhet thënē se edhe distresi respirator kusmaul, rërkimet, dispnea, konfuzioni dhe edema

[^23]cerebralékoma duken faktoré parashikues domethěnčs te pranisé sê KAD tek fêmijèt diabetikē, por duke qünē së nē njērin grup nuk kishte asnjē rast me kēto gjendje, atëherë analiza e regresionit logjistik binar ishte e pamundur.
Kurse lidhja e KAD me faktorest e tjereٌ né Tabelèn 33 nuk arriti domethënten statistikcre ( $\mathrm{P}>0.05 \mathrm{ne}$ edo rast).
 Ruporti i giassave (OR) nga testi i Regresionit Logjistik Binar

Variabli	OR ${ }^{1}$	95\% CI ${ }^{2}$		Vlera eP-sex
		Kufiri I poshtëm	Kufiri I sipërm	
Kandidoza orale   Jo   Po	$\begin{aligned} & 1.0 \text { (referencë) } \\ & 2.61 \end{aligned}$	$0.72$	$9.49$	0.144
```Vaginit monilial Jo Po```	1.0 (referencë)   1.44	$0.15$	$14.21$	0.755
Infeksione rekurente te lekures, traktit urinar dhe respirator Jo Po	$\begin{aligned} & 1.0 \text { (referencé) } \\ & 0.78 \end{aligned}$	0.18	3.42	0.744
Erč aceton Jo Po	1.0 (references) 18.27	5.34	62.54	<0.001
Distres respirator kusmaul Jo Po	Nuk ka të dhēnat tē mjaftueshme pēr kētē analizēt			
Rēnkime Jo Po	Nuk ka tel dhenat tex mjaftueshme pêr kéte analizes!			
Dispne Jo				

[^24]| Po | |
| :---: | :---: |
| Përgjumje
 Jo
 Po | 1.0 (referencě) - - 0.002
 25.79 3.42 194.67 |
| Konfuzion
 Jo
 Po | Nuk ka tè dheñat te mjaftueshme perr kete analizel |
| Edeme
 cerebrale/koma
 Jo
 Po | Nuk ka të dhēnat tè mjattueshme pēr kēte analizē! |

4.5.6 Lidhja e KAD me parametrat laberatorikë

Tabela 4.35 paraqet lidhjen midis pranisë sę KAD đhe disa parametrave laboratorikë teै fermijëve diabetikë në studim. Mund të vihet re që glicemia dhe triglicenidet janë të lidhura pozitivisht me praninề e KAD duke qēnê se cdo njèsi shtesê e glicemisẻ i mit gjasat e KAD me 0.006 herē, kurse cdo njēsi shtesë e triglicerideve i rrit gjasat e pranisë sê KAD me 0.099 herē dhe kēto ncryshime janē domethēnëse statistikisht ($\mathrm{P} \subset 0.05$). Ndèrkohē, pH dhe HCO3 janë të lidhura negativisht me praninë e KAD: kēshtu, një njësi shtesë e pHi ul gjasat e KAD me 78.275 herè kurse njē njési shtesë e HCO 3 i ul gasat e KAD me 0.312 here, dhe kêto ndryshime janě dometheñěse statistikisht ($\mathrm{P}<0.05$).
Lidhjet me parametrat e tjere laboratorikë rezultuan jo domethěnése nga ana statistikore.
 sgledthur - Koefficienti B nga tesit i Regresionit Logitsitik Binur

Variabli	Kceficienti B	Vlera e P-së 2
Glicemia	0.006	0.001
Azotemia	0.002	0.886
Kreatinemia	0.273	0.724
Natremia	-0.038	0.205
Kalemia	-0.304	0.502
pH	-78.275	0.022

[^25]| HCO3 | -0.312 | 0.001 |
| :--- | :--- | :--- |
| C-peptidi | -0.015 | 0.948 |
| GAD65 | -0.015 | 0.200 |
| IA-2 | 0.037 | 0.435 |
| Trigliceride | 0.009 | 0.020 |
| Kolesterol | 0.003 | 0.565 |
| LDL | 0.001 | 0.645 |
| HDL | -0.034 | 0.140 |

KAPITULLIV. DISKUTIMI

Studimi aktual qē pérfshiu 152 fémijề me DMT1 tê paraqitur pranê Shérbimit tẽ Spesialiteteve, Nr 2 nē Departamentin Pediatrik gjatë periuchēs kohore 1 Janar 201031 Dhjetor 2014 eshté njẻ ndër studimet e pakta qee hedhin drite lidhur me karakteristikat e përgjithshmè tę fèmijèvē me DMT1 dhe karakteristikat klinike tê tyre duke ofruar krahasimin e femijëve me DMT1 me ketoacidoze diabetike kundrejt fèmijëve me DMT1 pa ketoacidozë diabetike lidhur me karaktenstikat e përgithshme đhe klinike te tyre. Ne cijeniné tone nuk ka studime te ngjashme te kryera mè herêt në Shqipëri qẻ tē herhin dritē mbi një sērë aspektesh klinike tè fèmijëve me diabet mellitus. Ne kête kontekst, studimi aktual merr nje réndési edhe mé té madhe.
Nē vijim paraqitet një përmbledhje e gjetjeve kryesore tē studimit aktual, qē pasohet nga krahasimi i gjetjeve tẽ studimit tonẽ me gjetjet e studimeve tẽ tjera te ngjashme nẽ arenēn ndërkombētare.

5.1 PËRMBLEDHJE E GJETJEVE KRYESORE TË STUDIMIT AKTUAL

Studimi aktual pērfshiu 152 fèmiję tê moshěs 0-14 vjeç, tê diagnostikuar nê mënyrê përfundimtare me DMT1, pranê klinikěs soné. Mosha mesatare e fémijêve me DMT1 tê pěrfshirê nẻ kêtè studim ishte 8.3 vjeç, me njè raport gati tề barabartê giinor: 52% meshkuj dhe 48% femra. Tre te katërtate femijëve me DMTI të përfshirë nè studimin aktual banonin né zonat urbane tę vendit dhe njè e katêrta nẻ zonat rurale. Ne mënyrê interesante, diagnoza e diabetit mellitus u dyshua vetëm në 82.2% tẻ fënijeve në
 perfundimtare me DMT1.
Incidenca e DMT1 diagnostikuar për herē tè parë, në fëmijët dhe adcleshentët nē studim rezultoi 5.02% ndërsa incidenca e KAD në kohèn e diagnozès sé DMT1 pèr heré té parë, me rezultori 67.8%.
Përsa i pérket muajit te lindjes, sezonit te lindjes së fémijés dhe sezonit të diagnozés së DMT1, vihet re një pērputhje relativisht e nirē, ku shumica e fëmijēve kanë lindur nē muajët e ngrohte (prill-shtator) dhe shumica janë diagnostikuar në stinēn e ftohtë. Nē nē mënyrë tē përmbledhur mund të themi se afërsisht njē e katērta e fèmijëve kanē lindur nẽ cdo stine tē vitit dhe po aferrsisht njé e katērta e tyre janē diagnostikuar me DMT1 nẽ colo stině tẽ vitit.
Historia familjare për DMT1 ishte e pranishme në 15.8% tē fëmijëve me DMT1 kurse historia familjare pèr DMT2 ishte e pranishme ně 17.8% tê tyre. Nga ana tjetēr. prevalenca e infeksioneve virale shpërthyese te DMTI rezultoi 23.7%, kurse prania e faktorève psikosocial rezultuan nẻ̉ 2.6% e fèmijève me DMTI. Tę gjithĕ fèmijêt me DMT1 jané vaksinur me përpikmën sipas kalendanit te vaksinimit.

Koha mesatare nga momenti i fillimit té simptomave deri në mometin e diagnczés sés DMT1 ishte 23.35 ditē, duke variuar nga diagnoza e menjēhershme (0 ditë) deri në 90 ditē. Nuk ka diferenca gjinore statistikisht domethënẻse lidhur me kêtẻ parametēr por ka diferenca moshore domethënẻse ku kjo kohẽ ishtë mě e giatẻ tek fèmijět 5-9 vjeç (28.61 dite).

Prania e manifestimeve klasike te diabetit mellitus (poliuri, polidipsi, variacioni i oreksit the peshês) u evidentua në $99.3 \%, 99.3 \%, 100 \%$ dhe 98.1% tẻ fermijëve me DMT1, përkatęsisht, pa diferenca statistikisht domethěnẻse sipas pranisě apo tê ketoacidozës.
Nga ana tjete̋r, prevalenca e paraqitjeve të tjera klinike ishte si vijon: eneurezis nokturna (17.8%), dobēsi, lodhje dhe pafuqi (86.8%), dhimbjekoke (4.6%), konstipacion (3.3%), dhimbje abdominale (9.9%), té vjella (18.5%), diarre (2.6%), kandidoza orale (11.8%), infeksione tē lēkurēs apo traktit urinar/respirator (5.3%), erē aceton (38.8%), distres respirator Kusmaul (29.8%), rënkime (23%), dispne (29.6%), përgjumje (24.3%), konfuzion (14.5%) dhe edeme cerebrale/koma (2%). Paraqitje klinike me prevalence nê mēnyrë domethënēse mē tē lartë rezultoi tek fémijēt me DMT1 me KAD krahasuar me fémijêt me DMT1 pa KAD ishin: eneurezis nokturna ($25.2 \% \mathrm{vs}$. 2%, perkatęsisht), dobēsi lodhje dhe pafuçi (93.2% vs. 73.5%, pērkatësisht), tē vjella (24.5% vs. 6.1%, pęrkatěsisht), erě aceton (54.4% vs. 6.1%, pérkatęsisht), distres respirator kusmaul (44.1% vs. 0%, pèrkatēsisht), re̊nkime (34% vs. 0%, përkatẻsisht), dispne (43.7% vs. 0%, pertkatesisht), përgjumje (35% vs. 2%, pertkatęsisht), dhe konfuzion (21.4% vs, 0%, pèrkatěsisht).
Nè pĕrgjithësí, prevalenca e kandidozẽs orale, distresit respirator Kusmaul, rënkimeve,
 fëmijēt e moshēs 0-4 vjeç, më e ulet tek fëmijēt 5-9 vjeç pēr t'u ulur edhe mē tej tēk fèmijêt $10-14$ vjeg, nể njé trend dukshêm linear negativ tê lidhur me moshẻn.
Nē pêrgiithësi, fërnijēt me DMT1 me KAD diagnostikohen mē herët sesa fêmijët me DMT1 pa KAD, ndoshta për shkak të klinikēs më të shprehur të tyTe. Po kēshtu, proporcioni i fernrave ēshtē nē mënyrë domethënēse më i larté tek fërmijēt me DMT1 me KAD sesa tek fërnijët me DMT1 pa KAD (54.4% vs. 34.7%, përkatësisht). Vlera mesatare e glicemisë, pH -it, HCO3, the triglicenideve ështē mè e lartë midis fëmijëve me DMT1 me KAD krahasuar me fémijët me DMT1 pa KAD. Lidhur me parametrate tjerè laboratorikè si azotemia, kreatinemia, natremia, kalemia, C-peptid, GAD65, 1A2, kolesteroli, LDL dhe HDL, nuk u vunë re diferenca statistikisht domethēnënse midis femijëve me DMTI me KAD krahasuar me fémijet me DMT1 pa KAD dhe pa ndonjé trend tè qarte: kesto parametra herè ishin mẽ te larta tek fèmijest me DMTI me KAD dhe herè mè tê larta tek fèmijèt me DMT1 pa KAD. Ne studimin tonè rezultoi se $71.26 \% \mathrm{e}$ pacientēve rezultuan pozitiv pèr ac.anti GAD65 dhe 86.11% rezultuan poczitiv pèr ac anti LA2.

Vlera mesatare e kolesterolit dhe LDL-sê ishtę nê mênyré domethênése mé e larté tek femrat me DMT1 krahasuar me meshkujt me DMT1. Lidhur me moshēn, diferenca statistikisht domethẻnëse u evidentuan për vleręn mesatare tê kreatinemisé (mosha 5-9 vjeç paraqiti vlerěn mesatare më të lartë), natremisé (trend linear pozitiv me rritjen e moshess) dhe C-peptidit (mosha 5-9 vjec paraqiti vlerenn mesatare mes te larte).
Graviteti i KAD bazuar në pH venoz u paraqit e rêndë nẻ 32.1% tę fêmijëve me DMT1 me KAD, e moderuar nẽ 13.2% tẽ tyre, e lehtě nè 24.5% tẽ tyre dhe normale nẽ 30.2% tê fêmijẽve me DMT1, kurse tê gjithè fèmjët me DMT1 pa KAD natyrisht e kishinkêtê parametēr nē vlerë normale ($\mathrm{P}<0.001$). Bazuar në HCO serike, ashpërsia e KAD tek fémijest me DMT1 me KAD ishte e rëndé ně 28.8% tẻ tyre, e moderuar né 28.8% tẻ rasteve, e lehtë nē 34.6% të rasteve dhe normale nē 7.7% të kētyre fëmijēve.
Pērsal i pērket faktorēve të lidhur me praninë c KAD tek fèmijēt me DMT1 nē studirn, u evidentuan të dhēna interesante. Kështu, ferrrat dhe mosha $0-4$ vjeç kishin 2.24 herē dhe 2.97 herē mé shumé tē ngjarë të ishin të prekur nga KAD krahasuar me meshkujt the fëmijēt 10-14 vjec, pērkatësisht, dhe këto ndryshime rezultuan domethënēse nga ana statistikore ($\mathrm{P}<0.05$). Po kështu, u evidentua njē lidhje negative dhe statistikisht domethẻnése midis moshés dhe pranise se KAD; pěr çço vit té rritjes sé moshés sê fémijēve, giasat e pranisë së KAD ulen me 0.126 herē. Lidhur me vendbanimin, nuk u vunẽ re diferenca domethnēse, por た̂mijêt qẽ jetojnë̀ nê zonat urbane kanẻ 1.32 hetê mẽ shumẽ te̊ ngjare te̊ preken nga KAD krahasuar me femijet e zonave rurale.
Zgjatja e periudhes me shenja dhe simptoma duket se rrit giasat e pranise se KAD, por kjo lidhje nuk rezultoi statistikisht domethêněse. Historia familjare pęr DMTI đhe DMT2 nuk rezultoi e lidhur nẻ měnyrê statistikisht domethëněse me pranine e e KAD tek fèmijèt me DMT1. Sidoqoftè, fèmijest qẻ kanê histori familjare pozitive pēr DMT1 ose DMT2 kanë 6 herë mē shumē tē ngjarë të preken nga $\mathrm{KAD}(\mathrm{P}=0.127)$ kurse fëmijēt me histori pêr DMTI dhe DMT2 kanê 8.73 herê mé shumé tê ngjarè tê preken nga KAD krahasuar me fëmijēt me DMT1 pa histori familjare pēr DMT1 ose DMT2 ($\mathrm{P}=0.073$, nē kufi).
Edhe pse prania e infeksioneve virale ose gjendjeve të tjera shpërthyese i rrit me 1.58 herē gjasat e pranisë sē KAD krahasuar me fëmjèt pa këto gjendje, kjo diferencè nuk amiti domethēnien statistikore.
Prania e eneurezis nokturna, dobēsisē lodhjes dhe pafuqisë, t̄e vjellave, erës së acetonit, dhe per rgumjes i mit me $16.21,4.95,4.98,18.27$ dhe 25.79 herè gjasat e pranisè se KAD tek fëmijët me DMT1, dhe këto diferenca jane statistikisht domethēnëse ($\mathrm{P} \subset 0.05$). Ndestkohé, dhimbja e kokés, dhimbjet abdominale, kandidoza orale, vaginiti monilial, dhe infeksionet rekurente të lêkurẻs po kështu i rrisin giasat e pranisẻ së KAD por kẻto diferenca mk arritén domethënien statistikore.
Glicemia, $\mathrm{pH}, \mathrm{HCO} 3$ dhe trighioeridet rezultuan tê lidhura né mēnyrè statistikisht domethënëse me praninê e KAD: çdo njêsi rritje e glicemisě i mit gjasat e pranisê sê

KAD me 0.006 herè, çdo njesi mitje e triglicenideve i mit gjasat e pranisé se KAD me 0.009 herē, kurse lidhja e pranisë se KAD me pH dhe HCO 3 rezultoi negative dhe shumẽ mẽ e fortẽ krahasuar me gliceminè dhe trigliceridet: ritja e njé njésie tẽ pH-it i ul gjasat e KAD me 78 herě kurse njé njësi shtese e HCO3 i ul gjasat e pranisé se KAD me 0.312 herę. Lidhja e pranisè sẻ KAD me parametrat e tjere laboratorike rezultoi jo domethěnëse nga ana statistikore. Shpeshtěsia e pěrgiithshme e sěmundjeve autoimune bashkêshoqērnese tê DMT1 giatè periudhès sè studimit ishte 25.65% (39/152), prej tê cilëve 64.1% ($25 / 152$) ishin femra. Nẽ momentine diagnozës se己 DMT1 pēr here tẽ parê 16.45% (25/152) fèmijë kishin sēmundje autoimune shoqēruese: 52% u prezantuan me KAD, 68% ishin femra dhe 62.5% ishin te grup-moshës $5-9 \mathrm{vjeg}$. Ne momentin e diagnozës midis fémijēve me SAT 4\% e femijeve kishin TSH > 5 UI ml dhe 13.16% fëmijë ishin ac anti-TPO pozitiv, 80% e të cilëve kishin funksion nommal të gjitiroide. Nè studimin tonë né momentin e diagnozës se DMT1 bazuar në vlerën e ritur të antikorpeve anti anti-tTG IgA dhe anti-tTG $\operatorname{lgG} 2.63 \%$ shfaën SC nē të njëjtën kohë me diabetin dhe 78.95% e tyre 2.54 vjet pas diagnozës see caabetit ndersa SAT u shfaq 2.19 vitet e para pas diagnozēs.

5.2 KRAHASIMI I STUDIMIT TONE ME STUDIMET TË TJERA KOMBËTARE DHE NDËRKOMBËTARE

Sipas të dhënave mé të fundit të Federatës Ndërkombëtare të Diabetit (IDF), numri i fèmijève dhe adoleshentëve que jetojnè me diabet po mitet çdo vit. Në popullatat me origine Evropiane, pothuajse te githë fermijet dhe adoleshentet e prekur kane diabet tee tipit 1. Në popullata tē tjera, diabeti i tipit 2 është mē i zakonshēm (26). Nē mbarè botēn ka mè shumé se 651.7 mije femije đhe adoleshent <15 vjeç te diagnostikuar me DMT1 dhe çdo vit diagnostikohen mbī 108,300 raste të reja (26). Siç e kemi pērmendur nē hyrje te këtij punimi shkencor, ka dallime të mëdha kombëtare dhe rajonale ne numrin e fëmijēve dhe adoleshentēve me diabet të tipit L. Evropa dhe rajonet e Amerikēs së Veriut dhe Karaibeve kané numrin mẽ tẽ madh, duke zënē rreth giysmẽn e té giitha rasteve. Shtetet e Bashknara, India dhe Brazili, janë vendet me numrin më të madh tē fêmijēve dhe adoleshentēve (<20 vjeq) që jetojnë me diabet tẽ tipit 1(26).
 viteve 2002 dhe 2005 nē SHBA raportoi nje incidencè vjetore të diabetit prej 19.7 rastesh për 100,000 fèmijê nēn 10 vjeç đhe 18.6 raste pěr 100,000 fèmijè të̉ moshẽs 10 9 vjec; diabeti tip 1 zinte meth 70% te diagnozave (610).
Nê nivel botëror, ka nije variacion shumętë madh tę incidencess sẻ DMT1 midis fëmijëve $0-14$ vjeç: bazuar nẻ njẻ studim né 57 shtete té botẻs, rezultoi nje điferencè prej mẻ shumẻ se 350 herèsh nee nivelet e incidencés sè diabetit tip 1 midis viteve 1990 dhe 1999, duke variuar nga 0.1 raste pêr 100,000 fëmijé nẻ Kiné dhe Venezuelé në 37.8
raste pếr 100,000 fêmijé nè Sardenjè dhe 40.9 raste pěr 100,000 fèmijè nê Finlandê (610), kurse një stuđim tjetër nē 17 shtete raportoi një incidencë prej 52.6 raste për 100,000 fèmijê nẻ Finlandé dhe 10.3 raste pêr 100,000 fèmijè tê mochẻs nẻn 15 vjeç nê Lituani midis viteve 1989 dhe 2003 (610).
Nê studimin tonề reth 40% e fémijēve me diabet ishin $10-14$ vjeç the po meth 40% ishin 5-9 vjeç, ndërkohẻ qề vetèm 20% e tyre ishin $0-4$ vjeç nẻ momentin e diagnozés sẽ DMT1. Këto gietje përpathen me tę dhěnat e literaturẻs ndërkombẻtare. Kēshtu, nê perrgithěsi pranchet se koha e instalimit tê sëmundjes rritet gjatê fëmijẽrisẻ the mé pas fillan tē ulet ndērkohē që individët i drejtohen moshës së rritur; incidenca më e lartē e diabetit vihet re në moshẽn $10-14$ vjeç che kjo giěi dedikohet ndryshimeve te̊ vrullshme hormonale nē këtê moshé, krahasuar me moshat e tjera (610, 611). Në mënyré intercsantc, shpëmdarja e fènijēve me diabet sipas grupmoshēs nē 8 regjistra tē ndryshēm në SHBA, studimi SEARCH the EURODIAB raportoi njē shpēmdarje krejt tē ngjashme me atë të studimit tonč: në vitet $1985-1990$ meth 21% e fémijëve me diabet tip 1 ishin 0-4 vjeç nee regjistrin e Filadelfias, 37% ishin 5-9 vjeç dhe 41% ishin 10-14 vjeç (610), edhe në vitet 1990-1994 dhe 1995-1999 shpēmdarja e fèmijēve diabetikē sipas moshes mbeti pak a shume e ngjashme (610). Sipas regiistrit EURODIAB, 24\% c fèmijēve me diabet tip 1 ishin 0-4 vjec, 35% ishin 5-9 vjeç dhe 41% ishin $10-14$ vjec gjatę periudhěs 1989-2003 (610), rezultate kēto krejt tẽ ngjashme me gjetjet e studimit tonẽ. Njè studim né Francẻ midis 1299 fèmijěve 0-14 vjeç tê diagnostikuar me DMT1 raportoi se 26% e tyre ishin 0-4 vjeç nè momentin e diagnozěs se DMTI, 34\% ishin 5$9 \mathrm{vjeģ} \mathrm{dhe} 40 \%$ ishin 10-14 vjeç ne momentin e diagnozęs (612), gjetje kèto lrejtessisht tè ngjashme me shpëmdarjen moshore tẻ DMT1 tê evidentuar nẽ studimin tonë. Gjithashtu, duket se piku i incidence̋s se DMTI tek vajzat ndodh 3 vjet mè shpejt sesa piku i incidencēs sē sēmundjes midis djemve (610), kurse një tjetër studim raportoi se midis vajzave pikui incidencess ndodh në moshën 11 vjeg dhe midis djemve nè moshęn 4 vjeç dhe 13 vjeç (613).
Nē studimin tonē u vu re një shpëmdarje pothuajse e njëjtë gjinore midis fêmijēve me điabet tip 1. Kēto të dhēna mbēshteten edhe nga studimet e literaturēs ndērkombētare. Pèr shembull, njē studim raportoi se nivelet e incidencēs tek fèmijët 0-14 vjeç nuk paraqesin diferenca ginore statistikisht domethēnēse (142), duke nēnkuptuar se tē dyja ginitë preken praktikisht njēsoj rga diabeti tip 1. Po kēshtu, një tjetër studim qé i'u referua tè dhẽnave nga studimi me i detajuar i prevalencess sé diabetit tip 1 , studimit SEARCH pēr Diabetin tek tē Rinjté, raportoi se nuk u vërejtèn diferenca gjinore nē prevalencên e diabetit tip 1 (610).
Nê studimin tone ne nuk vumê re ndonjê tendencē tẻ qartẻ lidhur me sezonalitetin e lindjes sê fèmijëve me DMT1, duke qënè se freth njề e katërta e fémijěve me DMT1 nê stucim kané lindur nể secilēn stinē. Megjithatê, ka disa ndryshime liđhur me stinēn kur ështẻ vendosur diagnoza, duke qünẽ se nẽ vjeshtë u diagnostikuan 32.2% e të gjitha
rasteve me DMTI tê perffshira né studim, nẻ dimér 28.3% e rasteve kurse nẽ verê u diagnostikuan vetēm 13.8% e rasteve; nē mënyrë tè pēmbledhur, rreth 60.5% e rasteve me DMT1 nę̀ studimin tonê udiagnoctikuan nẽ vjeshtê-diměr kurse 39.5% në periudhēn pranverë-veré (shih Tabelën 4).
Sidoqoftes, nè literaturèn ndërkombëtare jane evidentuar edhe modele stinore të diagnozës sẻ DMT1, e lidhur kjo me rolin e pagogienezès mjedisore nẻ shfaqien e DMTI duke sugienar edhe njê lidhje midis stiness sę lindjes me zhvillimin e DMTI gjatẽ fazave tẽ mêvonshme tę jetęs (149). Trendet e raportuara nẽ arenẻn ndërkombêtare janē të ndryshme, ku në disa studime është evidentuar një përçindje mé e lartē e fèmijëve te diagnostikuar me DMT1 tek fémijêt e lindur né pranverê dhe mẽ teٌ ulèta midis fëmijëve tē lindur në vjeshtè kurse trende tē kundërta u raportuan nê disa shtete té tjera $(\mathbf{1 4 9}, 610)$. Variacioni i DMT1 sipas muajit apo stinēs së lindjes mund të shpjegohet me ndryshimine nivelve tê vitaminés D tek nënat, dhe efekti i Vitaminës D tek qelizat beta të pankreasit dhe qelizat imunitare; kështu mungesa apo parnfjaftueshmëria e Vitaminës D ēshtē e lidhur me ritjen e rrezikut tê DMT1 kurse marrja e suplementeve të kësaj vitamine e ul këtē rrezik (149). Nē pêrmbledhje tê kësaj ceshtijeje, èshtè e qartê se ka mospérputhje tè rezultateve lidhur me variacionin stinor tê diagnozës së DMT1 tek fëmijët tē giencruara nga studime të kryera nē kohē dhe popullata të ndryshme. Megithatě, tê dhënat sugjerojnê se stina e diagnozès sě DMT1 ndjek nję model pak a shumę tê qẽndrueshe̋m midis popullatave ku nivelet e incidencěs
 mbeten jo pêrfundimtare.
Përvec modeleve stinore tę diagnozês sę DMT1 tek fèmijët, me rëndësi êshtē tę evidentohet dhe trendi i incidencés sẻ kęsaj sëmundjeje nê kohẻ. Te dhěnat sugjerojnē pēr njè rritje të incidencës së DMT1 tek fëmijēt me kalimin e kohës, rritje kjo qē paraqet ritme të ndryshme nẻ kontinente tẻ ndryshme si nẻ Azi, Europe̊ dhe Amerikēn e Veriut, ku rritja mẻ e madhe e incidencës u vērejt tek fëmijét 0-4 vjeç, pasuar nga fëmijët 5-9 vjeç dhe fémijèt $10-14$ vjeç; megjithatè, nē disa kontinentet të tjera, si për shembull nē Amerikēn Qendrore, incidenca e DMT1 tek fënujët u ul gjatë viteve 1990-1999 (16, 610). Një studim i kohëve të fundit qé shqyrtoi prevalencên e DMT1 midis personave nēn 20 vjeç nē SHBA gjaté periudhès 2001-2017, raportoi se prevalencae DMT1 u rit пе̄ тlënyrë domethënäse nğa 1.48 raste pēr 1000 tē rinj nē vitin 2001 , në 1.93 rate për 1000 të rinj ně vitin 2009 dhe nè 2.15 raste pĕr 1000 tè rinj në vitin 2017, duke shěnuar rjë rritje prej $45,1 \%$ gjatē harkut kohor të gjashtëmbēdhjetë viteve; rritjet më tē mëdha u evidentuan midis tę bardhêve jo-hispanikè dhe persona me ngiyré jo-hispanike, duke evidentuar sęrisht komponentin erëndêsishêm gjenetik tẻ DMT1 (614). Studime tę tjera kanê raportuar tendenca tê ngjashme tè rritjes sê prevalencès sě DMT1 pěrgjatę kohěs tek tê rinjte. Një studim né Hollandè raportoi se prevalenca e DMT1 u rit nga 1 rast

grup-moshe nè vitin 2011 (615). Njê tjetêr studim nê SHBA raportoi për njér mitje tẻ incidencés vjetore të DMT1 prej 1.9% tek tē rinjtë nển 20 vjeç, duke paraqitur ritme mẻ tẻ latta mitjeje tek tẻ rinjte e moshěs $10-19$ vjeç, ku norma e mitjes vjetore rezultoi 4.8% (616). Një rishikim i literaturẻs đhe meta-analizẻ e kohëve të fundit, që përfshiu 193 studime tẻ botuara nè tę githě botẽn gjatě periudhès 1990-2019, arriti nê pĕrfundimin se incidenca đhe prevalenca e DMT1 po rritet né̉ te giithẻ botẽn, duke vënĕ theksin nể problemet pễr sigurimin e insuliněs sề nevojshme nề vendet me tê ardhura
 parandaluese tē nevojshme (617).
 DMT1 në muajt e dimrit the prarverès, gjë që u evidentua edhe në studimin tonē, raportohet dhe në́ arenën ndërkombētare; kjo shpjegohet me rolinnxitës të infeksioneve në precipitimin e DMT1, edhe pse nuk ka konkluzione pèrfundimtare lidhur me roline infeksioneve specifike nē shfaqjen e DMT1 (149). Pēr shembull, një studim midis fërnijēve 0-14 vjeç nê Bullgari raportoi se një pjesë mè e madhe e fëmijëve me DMT1 u diagnostikuan gjatē periudhēs vjeshtē-dimēr (rreth 62.5\%) (618), njē shifër kjo Krejtësisht e ngjashme me gjetjen në studimin tonè ku 60.5% e fèmijëve me DMT1 u diagnostikuan nề vjeshē-dimèr. Tendenca të tilla janē raportuar edhe midis të riturve me DMTl (619).
Nê studimin tone̊ tre tę katẽrtat e fęmijëve me DMTI banonin nê zonat urbane dhe
 incidencé mjaft mê tê larté te DMTI tek fèmijèt e zonave urbane krahasuar me incidencẻn midis fèmijěve tẽ zonave rurale. Njề tendencẻ e tillè êshtê evidentuar edhe ně arenênn ndërkombětare, duke i'u referuar studimeve tê ngjashme tê kryera nẽ vendet e Ballkanit (618). Për shembull, njē studim midis fèmijëve $0-14$ vjeç tē diagnostikuar rishtas me DMT1, raportoi se incidenca e DMT1 ishte mê e lartë midis fêmijève qee jetonin në zonat urbane sesa midis fëmijēve qē jetonin në zonat rurale, pêr cdo grupmoshë nē studim (tek fémijèt 0-4 vjeç: incidenca 4.93 raste per 100,000 fémijè tek fëmjët e zonav urbane the 2.47 raste pङ̄r 100,000 fëmijë tek fëmijët e zonave rurale; tek fémijēt $5-9$ vjec: incidenca 7,72 raste per 100,000 fëmijë tek fémjët e zonav urbane dhe 5.11 raste pēr 100,000 fèmijë tek fëmijët e zonave rurale; dhe tek fërnijèt 10-14 vjec; incidenca 10.5 raste per 100,000 fèmije tek femjët e zonav urbane dhe 7.82 raste pér 100,000 fèmijë tek fëmijest e zonave rurale), pa diferenca statistikisht domethěněse midis vajzave dhe djemve (618). Sidoqoftë, studime té tjera kanë evidentuar tendenca
 (620, 621, 622, 623). Studimi nē Austri, nē menvrè specifike the interesante, sugjeroi se incidenca mê e lartě e DMT I nê zonat rurale mund tê lidhet me njê ekspozim mê tê ulèt tê kètyre fèmijêve ndaj faktorève mjedisore mbrojtẻs ($\mathbf{6 2 3}$).
Nê këtè mėnyrę, faktorẻ statistikisht domethěnès rreziku pěr shfaqjen e DMT1 tek
femijêt janề mosha, rezidenca urbane dhe viti i diagnozěs, ku incidenca e DMT1 mitet me 4.1% cdo vit (618). Faktorë té tjerë lidhen me infeksionet ose viruset, faktorēt dietikẻ tể tillę si gluteni, obeziteti nẻ fëmijęri, përmirësimi i sanitetit dhe higiene̊s tẻ cilat ndikojnë negativisht ně zhvillimin e sistemit imunitar i cili kërkon stimulim nga faktorêt mjedisore qê tê maturohet, etj. (624).
Lidhur me komponentin gjenetik teٌ DMT1, nê studimin tone ne evidentuam qě 15.8% e femijëve me DMT1 kishin njè histori familjare pèr DMT1, 17.8% kishin nje histori familjare per DMT2, 28.3\% kishinnje histori familjare per DMT1 ose DMT2 the 2.6\% kishin histon familjare si pēr DMT1 ashtu edhe për DMT2 (shih Tabelën 5). Komponenti gjenetik i zhvillimit tee DMT1 eshte i njohur the i miré pêrshknar ně literaturën ndërkombētare. Për shembull, raportohet se rrezikui zhvillimit tẽ DMT1 tek tę afêrmit c shkallës së pērr ështē 8 derí né 15 herê mê i lartẹ (324, 625, 626) dhe rreth dy herë mé i lartë tek të afêrmit e shkallēs sē dytë, krahasuar me fémijēt qē nuk kanē tē afërm me diabct ($\mathbf{6 2 5} ; \mathbf{6 2 7}$). Po kēshtu, sipas litcraturc̄s ndērkombëtare, rreth $10-12 \% \mathrm{c}$ fëmijēve me DMT1 kanē histori familjare pēr diabet nè momentin e diagnozēs, dhe kjo pērqindje mund të arrijể mê shumë se 20\% gjatê jetës sē tyre (. (35, 347, 627, 628), shifra kěto qẽ janè shumẻ tè ngiashme me gjetjet e studimit tonè, Njè studim midis 1488 fémujēve tè moshës 0-14 vjeç në Finlandè raportoi se 21.8% e tyre kishin njē tê afèrm tè shkallẻs së parê ose tę dyteٌ me diabet tip 1 nẻ momentin e diagnozẻs (629).
Mẽ tej, literatura sugjeron se baballarët e transmetojnẻ̉ DMT1 tek pasardhêsit e tyre mê shpesh sesa něnat (626,630), edhe kẻto gjetje tê ngjashme me rezultatet e studimit toně ku 12.5% e fèmijëve me DMT1 kishin babain me DMTI nẻ kohèn e diagnozẻs dhe vetęm 8.4\% e tyre kishin nênnęn me DMT1.
Komponenti gjenetik ështẽ i rëndęsishêm pasi duket se DMT 1 sporadik dhe DMT1 me komponent gjenetik ndryshojnë lidhur me mekanizmat patogienetikë tè tyre, ku fëmijēt me DMT1 me komponent gjenetik paraqesin njè frekuencẻ mè te lartè tê autoantitrupave kundēr insulinēs (LAA) dhe një rumēr mē të lartë të përgjigjeve pozitive tē antitrupave krahasuar me rastet me DMTI sporadik (pa komponent gjenetik); po kēshtu, giendja klinike e fèmijēve me DMT1 qē ka njē komponent gjenetik farriljar të sëmundjes ka tendencēn të jetê mē e lehtē nẻ momentin e diagnozēs krahasuar me fëmijēt me DMT1 sporadik (628,631). Kēshtu, studimi midis fèmijëve me DMT1 nē Finlandè raportoi se fèmijët me DMT1 sporadik (pa komponent gienetik) paraqitēn ketoacidozè (KAD) dhe petreqěsim tê vetëdijès mè shpesh krahasuar me fèmijèt me DMT1 me komponent gienetik familjar; po kështu, humbja e peshës sē fémijēve me DMT1 sporadik ishte mê e madhe, pęrqëndrimi i b-hidroksibutiratit dhe pèrqẽndrimi i glukozês plazmatike ishin mê tê larta kurse pH i gjakut ishtë mẽ i ulăt tek fèmijĕt me DMTI sporadik, dhe te giitha ketto ndryshime ishin statistikisht domethèněse ($\mathrm{P}<0,00$) (629). Kjo mund tẽ shpjegohet me faktin që nê familje ku dihet qee qarkullon diabeti, prindèrit zakonisht janè̉ mé tê ndërgjegjësuar pěr kętě sěmundje duke i bëre ata me tê
kuidesshēm lidhur me zbulimin dhe evidentimin e simptomavetê hershme tê se̊mundjes tek fémijët e tyre, dhe duke mundēsuar nè këtè mēnyrë konsultën më të shpejtẽ me mjekun, vendosjen e hershme te diagnozess dhe fillimin e shpejte te trajimit (629). Po késhtu, dallimí i shenjave tę hiperglicemisę pęrmes vetè-matjes sě kētij parametri mund tê kontribuojê nè kêtẻ drejtim.
Duket se statusi i gjeneve HLA përcakton ndjeshmërinẻ e individëve për t'u prekur nga DMTI duke qënẻ se 90% e njerëzve me DMTI autoiman kanè antigienet HLA-DR3 ose HLA-DR4, krahasuar me vete̊m 20% teٌ njerězve me kěto antigiene ně popullatěn e pērgiithshme (632). Tek individēt në rrezik për DMT1, domethënë tek individët me gienin HLAA përkatés, haplotipi ështẻ përgjegjès pèr 30% deri 50% të rrezikut gjenetik pēr DMT1 (633). Më tej, ka të ngjarë që një nxitës i tipit mjecisor, si pēr shembull njē infeksion enteroviral subklinik, tuund të bëhet shkak pēr fillimin e përgiigies autoimune tek kēta persona tê ndjeshēm cse tê shkaktojë citolizën e qelizave beta té pankreasit duke cuar nē njē DMT1 të natyrës jo-automune (634).
Duke patur parasysh natyrēn stinore tē hasjes sē DMT1, atēherë roli i enteroviruseve dhe infeksioneve tê tjera c̄shtē shqyrtuar the studiuar nē mēnyrè tê gjerë në përpjekje pěr tê ndricuar mě tej etiologiinê e DMT1 tek fèmijêt. Sic e kemi pêrmendur mê herět nē kētē punim shkencor, DMT1 ēshtē një crregullim gjenetik autoimun qē shkaktohet nga qelizat T CD4 ${ }^{+}$dhe $\mathrm{CD8}^{+}$reaktive tê cilat njohin antigjenét pankreatiké, te tillë si insulinēn apo enzimẻn dekarboksileza e acidit glutamic (GAD), duke shkaktuar si pasoję shkatërrimin e qelizave beta tê pankreasit qě prodhojnẻ insulinën (635). Duket se njê sęrè infeksionesh luajnẻ rol ne̊ shadęrrimin e antigjeneve endogjene beta-qelizore nê struktura imunogienike, ku infiltrimi i ishujve tę Langerhansit, ku strehohen qelizat beta, nga qeliza T autoreaktive tē aktivizuara, konsiderohet si shtysa madhore e progresit te diabetit mellitus tip 1 ; këtu duket se infeksionet virale mund të luajnë një rol tê rêndësishëm (635). Në këte kantekst, njè studim ně Finlandë raportoi se fèmijēt qē zhvilluan autoantitrupa tē lidhur me diabetin kishin nivele mē të larta tē antitrupave kundër enteroviruseve krahasuar me fèmijët në grupin e kontrollit (636). Po kēshtu, është zbuluar ARN nga enterovinuset nē pankreasin e pacientëve me DMT1 gjatē autopsisé (637). Po kështu, DMT1 karakterizohet nga shkatërrimi autoimun i qelizave beta të pankreasit, tê ndërmjetēsuar nga qelizat T dhe ështẻ sugjeruar lidhja midis serokonversionit nga enteroviruset Coxsackie dhe fillimit te DMT1, ose infeksionit viral tę qelizave beta tę pankreasit dhe inflamacionit te ishujve, dèmtimine funksionit te tyre dhe rjedhimisht nē DMT1 (75).
Një numér i madh virusesh mendohet se lidhen me zhvillimine DMTI, duke përfshiree enteroviruses si Coxascie B, rotavirusi, virusi i parotitit (ose shytave, nē giuhēn popullore), citomegalovinsi, virusi i rubeoless, etj. (635). Midis ketyre vimseve, enterovinuset janề nděr mê tẻ̉ studiuarit the kandidatēt mê tê mundshèm pẽrr tê shkaktuar DMT1, bazuar nè faktin se infeksioni nga enteroviruset éshtẽ mẽ i shpeshtê
tek vellezęrit/motrat qe̊ zhvillojne DMT1, si dhe rritja e antitrupave kundër enteroviruseve tek nënat shtatzēna fémijët e tê cilēve zhvillojnê DMT 1 mē vonē në jetë; nê disa studime eshtẽ evidentuar madje se rritja e autoantitrupave tek fëmijèt e ndjeshěm gjenetikisht ndodh paralelisht me modelet stinore te infeksioneve nga enteroviruset: domethêně, ēshtẻ zbuluar njê lidhje kohore midis shfaqjes sê autoantitrupave te paré dhe shenjave te infeksionit nga enteroviruset si midis vellẽzẽrve/motrave tę fèmijēve tê prekur nga DMT1 ashtu edhe midis fèmijēve me ndjeshméri teٌ rritur pěr DMT1 bazuar neٌ profilin gjenetik (HLA) tě tyre (635). Virusi Coxascie Bi tipi 4 (CVB4) është shtami më i shpeshte i hasur në fémijët diabetikë dhe pre-diabetikë, duke u zbuluar nê gjakun e këtyre pacientève që nê fillimin e sěmundjes ose giatê kursit të DMT1; po kēshtu pērgjigja qelizore ndaj antigjenéve të CVB-së është e rritur tek pacientēt me DMT1 pas instalimit të sc̄mundjes dhe po kēshtu, një numër faktesh të tjera janë të disponueshme, duke forcuar më tej mendimin e ekzistencës sē një̀ lidhjeje midis infeksioneve enterovirale me zhvillimin e DMT1 (635). Mckanizmat molekularē përmes tê cilave enteroviruset shkaktojnē ose nxisin zhvillimin e DMT1 dalin përtej qêllimit tê këtij punimî shkencor.
Megiithate, ka dhe studime q es hedhin dyshime lidhur me rolin negativ te infeksioneve enterovirale në shkaktimin e diabetit, bazuar në observimet e një incidence të ulēt tē DMT1 nế shtetet me njể status tẻ̉ ulĕt socioekonomik, qê nẻnkupton njê nivel mê tê
 gjithashtu (aty ku vaksinimet janẻ tê larta, kjo bên qê tê ulen infeksionet nẻ̉ fèmijêri duke cuar nê ulje te DMT1, the anasjelltas) (635). Nga ana tjetër, njé numerr i madh i pacientẽve me DMT 1 janể fèmijët e paré nê familjet me shumĕ anêtare, duke sugjenuar nje ekspozim mê tê ulêt ndaj infeksioneve, përvec kēsaj, ndęrkohẻ que infeksionet kongenitale akwohen se luajnë rol në zhvillimin e DMT1 tek pasardhēsit, përdorimi i antibiotikeैve nga něnat giatè shtatzënisẻ dhe rrjedhimisht edhe nga fèmijest e tyre, mund tê jetē i lidhur me rjë rrezik mē tē lartē për DMT1 (635).
Nè pērmbledhje të kësaj cëshțjeje, incidenca mè e lartē e DMT1 nē vendet Perëndimore mund t'i dedkohet fenomenit të "pastërtisē apo higienēs së lartë", sipas kēsaj hipoteze, ulja e niveleve tē infeksioneve mund tē cojë në rritjen e incidencës së DMT1, duke mos mbēshtetur kēshtu rolin sēmundje-shkaktues tē viruseve nē këtë rast; madje ēshtē sugjeruar se ulja e shpeshtēsisë së infeksioneve mund të cojë në rritjen e ndjeshmērisé ndaj efekteve tè viruseve diabetogjenike (635). Sidoqofte, edhe pse ka fakte tè shumta tē depērtimit të indit pankreatik nga viruset tek pacientët me DMT1, ekspozimi ndaj viruseve mok duket tě jetě domosdoshměrisht shkaku i DMT1 por përkundrazi mund tè jetẻ i dobishẻm në disa raste, nẻ rastin e fundit kjo mund tẻ jetê njê shenjê se sistemi imunitar mund tê edukohet qê tê përballet mê mirè me crregullimet inflamatore duke qē̃ne i ekspozuar mê shpesh ndaj ngjarjeve inflamatore gjate jetẽs (635). Né pérmbyllje tê kêtij seksioni tê diskutimit, mund tę pohojmè se ka nevojé pér studime tẻ mêtejshme,
duke pêrdorur dizajne studimi mé tę forta nga ana metodologiike pèr tę qartësuar mê tej rolin e infeksioneve nē zhvillimin e DMT1. Deri në momentin qê kjo lidhje tē saktësohet, rekomandohet qě fémijèt me një rrezik gjenetik tê rritur pẽr DMT1 tê monitorohen rregullisht, por edhe kurdchere qè ata preken nga njé infeksion viral gjithashtu, pasi kjo qasje mund tę ofrojể tę dhēna më bindęse lidhur me roline agjentẽve infektivĕ ně zhvillimn e autoimunitetit (635).
PËrsa i perket infeksioneve virale nẽ vendin toné, te dhënat nuk janẽ tę disponueshme. Por, te dhěnat anektodike sugjerojne pěr një nivel relativisht të ulèt higiene, sidomos në zonat rurale. Kjo nënkupton qē enteroviruset janē më të përhapura në zonat rurale. Ně dritën e paqartėsisé rreth lichjes sé enteroinfeksioneve dhe DMT1, dhe baznar ně faktin qē nē studimin tonë vetēm 25% e pacientēve diabetikē jetonin nē zonat rurale, atc̄herë rczulton që ky studim mbështct atē pjesẽ tē literaturēs që pohon një rol mbrojtec̄s tē infeksioneve enterovirale nē zhvillimin e DMT1 tek fëmijët Sidoqoftē, kjo ështē vctēm një hipotezzē e jona, bazuar thjesht nē vēzhgimin e proporcionit tē fēnijēve me DMT1 qē jetoinë nē zonat rurale ndaj totalit tē fëmijët me DMT1 në studim, dhe nê hamendësimin për njē nivel të lartē tē enteroinfeksioncve virale në zonat rurale; prandaj, ky supozim nuk mund tê merret si i miręqenẻ por sidoqofté, ai hedh njé hipotezē interesante e cila vlen tē studiohet pérmes studimeve tē tjera në tē ardhmen. Pêrsa i pêrket rolit tę stresit psiko-social në zhvillimin e DMTI tek fèmijôt, literatura ndęrkombêtare sugieron se mund tê ekristojé njè lidhje e tillé. Pe̋r shembull, njè studim midis 338 tèmijêve me DMTI tể moshès $0-14$ vjeç nè̉ Suedi dhe 528 kontrolleve, sugjeroi se ngjarjet jetësore midis fèmijêve me DMT1 kishin tendencén tẻ ishin mé tê rěnda ose me ashpęrsi mé teٌ madhe krahasuar me fèmijest pa DMT1; tek kêto ngjarje stresuese jetësore përfshiheshin këroẻnimet apo frika pe̊r humbjen e anêtarěve tê familjes, tē tilla si divorc apo vdekje e prindërve, tē cilat mund të kené ndikime tē ndryshme nề mosha tè ndryshme, the u evidentua se kêto ngjarje stresues ishin më të shpeshta midis fëmijēve diabetikë sesa midis fëmijëve jo-diabetikë me njē rrezik relativ (RR) prej 182, i cili thellohej edhe mè tej kur kontrollohej efekti konfondues i moshës, ginisë dhe treguesve sociale tē familjes (638). Autorët arritën në pērfiundimin se ngjarjet stresuese gjatë jetès, qē lidhen me kērcēnime aktuale ose të mundshme tē humbjes së antëarëve tē familjes, janë të lidhura me zhvillimin e DMT1 tek fëmijës e moshës $5-9$, duke u sjellur si njē faktor rreziku për kētẻ sēmundje (638). Po kēshtu, njē tjetèr studim midis fèmijève diabetikè tê moshès $0-14$ vjeç raportoi se numri i ngjarjeve negative stresuese psikosociale (duke përfshirë ngjarjet me përshtatjen e vështirë, devijimet e sjelljes sê fèmijëve, dhe funksionim tě crregullt dhe kaotik tê familjes) 12 muaj para diagnosës sẻ DMT1, ishte mẻ i lartê tek fèmijèt diabetikẻ sesa tek fèmijèt pa diabet; për mé tepěr, autorēt raportuan se ngjarjet negative tê jetés gjatë dy viteve para diagnozès sé DMT1 tek fèmijēt e \quad risin né mènyrè statistikisht domethènèse rrezikun e DMTI (639). Né studimin tonê, ne nuk kishim njè grup krahasimi pěr tè analizuar něse
ngjarjet stresuese psiko-sociale tê jetès janể njê faktor reziku pèr DMTI tek fèmijèt, por stresi psiko-social i lidhur me divorcinapo vdekjen e prindërve u evidentua nē 2.6% tê fêmijëve me DMT1 nê studimin tonê. Pěr me tepër, nê përputhje me studimin nẽ Suedi, ngjarjet stresuese psiko-sociale ishin teٌ pranishme në njě përcindje nĕ mẽnyrẻ domethënëse mẻ tę lartê tê fèmijève me DMT1 tê moshés 5-9 vjeç krahasuar me pěrqindjen pêrkatěse tek fèmijĕt e moshěs $0-4$ dhe $10-14$ vjeç, duke konfirmuar nê njĕ fareٌ mënyrẻ̉ gjetjet e studimit nè Suedi. Studime tê tjera mund tę ndërmerren pẻr tê verifikuar nëse stresi-psikosocial ështę nję faktor rreziku pēr DMT1 në vendin toné.
Lidhur me periudhën kohore nga fillimi i simptomave tē sēmundjes deri né diagnozēn e DMTI, ně studimin tonë ne evidentuam se koha mesatare ishte 23.35 dité, duke variuar nga 0 ditë (diagnoze e menjēhershme) deri nē maksimumin prej 90 ditē (dmth, 3 muaj). Ndërkchē studime tē ngjashme kanë raportuar shifra tę ndryshme lidhur me kohēn midis shfaqjes sē simptomave dhe momentin e vendojses së diagnozēs. Kēshtu, një studim i ndērmarrë midis prindērve tē fémijëve me DMT1 të moshēs 1 muajsh dcri nē 16 vjeç nē Angli, raportoi se koha nga simptomat e para deri né momentin e diagnczës varioi nga 2 ditē deri në 315 ditē, me njē medianē prçj 25 ditēsh; nē pjesēn dęrmuese tę rasteve kjo kohê ishte përfshinte periudhèn nga fillimi i simptomave tê sēmundjes deri në perceptimin e nevojēs pēr tē kërkuar ndihmē mjekēsore (640). Nē disa raste, pẽr shkak se simptomat e DMT1 mund te zhvillohen shpejt, diagnoza e DMT1 vendoset nga pediatri apo në shërbimin e urgjencẻs. Literatura ndërkombz̧tare sugjeron se periudha e kohes nga fillimi i simptomave deri nẻ diagnozê mund tẽ variojế shumé, duke u luhatur nga pak ditê deri nẻ̉ disa javẻ apo disa muaj nẻ varęsi tê nivelit
 familjar me diabet, nivelit tê kujdesit shêndetêsor, etj. (641). Nê rastet kur anętarê tẻ tjerè tē farriljes janē tē prekur nga ciabeti, kjo kohē mund tē jetë vetēm pak ditē nēse prindërit jơne̊ shumê te kujdesshëm; megjithatẽ, edhe mosha e pacientit «̨shtę e rēndësishme pasi pacientët me moshë më tē vogël zakonisht paraqiten me simptoma tē lehta, tē paqarta, duke përfshirē apatinē, mitjen e irritimit, mungesën e rehatisē kurse fèmijēt më të rritur zakonisht paraqesin simptomat klasike tē sēmundjes si poliurinë, polidipsinë dhe humbjen e peshēs trupore (641). Nga ana tjetër, ēshtë evidentuar se dagnoza e DMT'1 mund tē vendoset më vonë tek vajzat sesa tek djemtë, pēr arsye tē panjohura (641). Pērvec kèsaj, fëmijēt mē tē vegiël në moshë kanë mē shumë tē ngjarē tê paraqitènnè faza të rënduara tê sèmundjes duke u reflektuar kjo nẽ nivelet mè tè larta tē ketoacidozès (KAD) tek ta krahasuar me fēmjët më tē̄ rritur; po kēshtu, tek fẹ̀mijët e vegjel haset një nivel mè i rěndê 1 dehidrimit pèr shkak tè niveleve mé té larta tê infeksioneve respiratore the gastrointestinale nẻ kētê grup, giẻ qề mund tê vonojē diagnczẻn (641).
Pêrsa i pērket kuadrit klinik tè DMT1, shenjat dhe simptomat klasike tê sëmundjes u

(99.3\%), polidipsinè (99.3%), humbjen e peshés (98.1%) dhe variacioni i oreksit (100%). Këto të dhëna janē nē pērputhje me raportimet e literaturés ndèrkombëtare, e cila pohon se zakonisht femijêt paraqiten me njê histori tê poliurisě, polidipsisé dhe humbjes së peshẻs, qę ka zqjatur pêr ditẻ, javẻ dhe muaj me radhe ($633,640,642,643$). Po kęshtu, prania e eneurezis nokturna, e pranishme tek fèmijêt me DMTI nẽ studimin tonè, raportohet edhe në studime tę tjera në arenẻn ndērkombëtare (612,644).
Lidhur me prevalencęn e ketoacidozẽs diabetike (KAD) tek fèmijēt me DMT1 nê studimin tonë, ajo rezultoi mjaft e larté, në nivelin 67.8%. Kjo shifêt është mẽ e lartẽ se nivelet që raportohen në̉ literaturën ndèrkombẻtare. Pēr shembull, një studim midis fèmijěve me DMT1 te̊ moshẻs nga 1 muajsh deni ne 16 vjeç raportoi se prevalenca e KAD né momentin e diagnozës ishte 39.8% (640). Një tjetër studim raportai se meth një c treta e fémijēve të diagncstikuar rishtas me DMT1 paraqiten me KAD nē momentin e diagnozës, the KAD shoqërohet me një nivel relativisht tē lartē vdekshmërie prej 0.3\%-0.5\% pavarësisht trajtimit agresiv (633), $\mathrm{Njē}$ tjetèr studim midis fêmijēve me DMT1 tē moshēs 0-12 vjeç nē Arabinè Saudite raportoi njê prevalencē tē KAD prej 31.4% tek fèmijët me DMT1 tê moshës $0-5$ vjeç dhe një prevalencē préj 15.3% tek fëmijest me DMT1 mbi 5 vjeç ($\mathbf{6 4 1}$). Njě tjetèr studim midis 650 kartelave mjekësore tè fënuijëve me DMT1 raportoi një prevalencë të KAD prej 15.5\% (101/650); 58.4% e episodeve tě KAD-it u věrejtẽn tek famijĕt e diagnostikuar rishtas me diabet dhe 41.6% tek fèmijêt me DMT1 tẽ diagnostikuar mè parë, gjithashtu, KAD i rênde u diagnostikua nể 18.8% tę fèmijesve me KAD , KAD i moderuar nẽ 35.6%, dhe KAD i 1ehtẻ nê 45.6% tẽ fêmijëve me KAD; shkaku mẽ i shpeshtè i KAD tek fêmijēt me diagnozě mè te hershme me DMT1 ishte mos respektimi i regjimit tę trajtimit (ně 52.4% tę rasteve) dhe infelsionet akute (nẻ̉ 28.6% të rasteve); ndërkohë, midis fémijève me KAD, prevalenca e komplikacioneve të ndryshme ishte si vijon: crregullimet elektrolitike (67.3%), pankreatitik akut (5%), hemoragjia gastrointestinale (1%), the edema insulinike (1%) (645). Një tjetēr studim nē Poloni midis fëmijēve 0-14 vjeç të ndjekur gjatē njē periudhe 26 vjeçare nga 1987 deri në vitin 2012, raportoi njē prevalencē tē KAD prej 22.4% midis fêmijëve tē diagnostikuar me DMT1 (646). $\mathrm{Njē}$ tjetēr studim i madh (the SEARCH for Diabetes in Youth Study), i zhvilluar në pesē qendra tē stuđimit nē ShBA identifikoi tē giitha rastet e reja (rastet incidente) me diabet midis të rinjve tè moshēs 0-19 vjeç duke filluar nga viti 2002, the ndjekja vazhdoi deri né vitin 2010, midis tě rinjve me DMT1 prevalenca e KAD rezultoi 30.2% nẽ vitet 2002-2003, 29.9\% nē vitet 2004-2005 dhe 31.1\% nē vitet 2008-2010 (647). Një studim tjetèr midis të rinjve me DMTlraportoi njê prevalencẻ tê KAD nè momentin e diagnozes's prej 353% nga tê dhennat e studimit "SEARCH for Diabetes in Youth (SEARCH)" dhe 28.7% nga tê dhènat e studimit "Registry of Youth Onset Diabetes in India (YDR)" (648). Nể ményrê te ngjashme, njê studim midis 186 fèmijëve tê diagnostikuar rishtas me DMT1 raportoi nje prevalencé te KAD-it prej 33% (644).

Njê studim midis 4038 fémijēve me DMT'1 nể Australi raportoi se prevalenca e KAD nề momentin e diagnczz̈s ishte $37.2 \% ; 26 \%$ e këtyre fennijēve kishin KAD të lehtë dhe 12% kishin KAD tê re̊ndẻ (649):
Një rishikim sistematik i literatures i botuar né vitin 2017, me qellim studimin e incidences dhe prevalencès sè KAD tek adultèt me DMT1, nê popullatën e pěrgiithshme, dhe sipas moshës, giinisě, rajonit gjecgrafik, etnise dhe Hojit tě insulinés sê pérdour, raportoi gietje mjaft interesante; kështu, incidencae KAD midis pacientëve me DMT1 rezultoi me e lartè ne Kine (263 raste pěr 1000 person-vite), the mê e ulĕt në disa studime në Izrael, SHBA dhe Kanada (0 raste per 1000 person-vite), kurse prevalenca e KAD ishte mê e larté né Kanada (128 raste për 1000 person-vite) dhe mě e ulēt në njè stuđim në SHBA (10 raste për 1000 person-vite) (650).
Një studim në Francē midis fëmijëvē 0-14 vjeç me DMT1 raportoi një prevalencë tẽ KAD prej 43.9%, prevalenca e KAD të rēndē rezultoi 14.8% the prevalenca e $K A D$ tē moderuar rezultoi 29.1% (612), kurse njē studim nẽ Belgjikë tck fémijēt me DMT1 tē moshës 0-17 vjeç raportoi njē prevalencétë KAD prej 42% (651).
Sidoqoftë, një studim prospcktiv midis fèmijēve të moshēs nën 16 vjeç tē diagnostikuar me DMT1 gjate̊ periudhès 2009-2018 ne̊ njè spital tê fêmijève nẽ̃ Kinẽ, raportoi se prevalenca e KAD-it në momentin e paraqitjes né spital ishte 50.1%, nga të cilēt 36% kishin KAD tę lehtě, $30 \% \mathrm{KAD}$ tę moderuar dhe $339 \% \mathrm{KAD}$ tę rę̃nde ($\mathbf{6 5 2}$). Nję tjetër studim evidentoi nję prevalencę te̊ lartę tę ketoacidozês midis fèmijēve me DMT1 tê diagnostikuar glaté periudhês 1992-2004, nề nivelin prej 55.3% nề momentin e diagnozẻs (653).
Lidhur me ashpěrsine̊̀ e KAD, ně studimin tonê rreth $29 \%-32 \%$ e fèmijëve diabetikë me KAD kishin KAD tê rênde, $13 \%-29 \%$ kishin KAD teß moderuar dhe $25 \%-35 \%$ kishin KAD tê rēndë (Tabela 21), gjetje këto që janē nê pērputhje me raportimet e literaturés $(612,652,654)$
Bazuar nē të cheēnat e mēsipërme, rezulton se prevalenca e KAD tek fèmijët me DMT1 nē vendin tonë mbetet shumē e lartē, dhe mē e lartë se raportimet nē literaturēn ndërkombētare, të cilat variojnë nga reth 15% nē maksimumin prej 67% ($\mathbf{6 5 5}$). Kjo nēnkupton se fémijēt me DMT1 paraqiten tepēr vonë pranë shērbimit të kujdesit shēndetésor në Shqipëri, duke u paraqitur nē gjendje më tē rēndè si pasojë e kësaj vonese, e cila në pjesën mē tē madhe të saj lidhet me negizhencën e prindërve apo paditurinè e tyre lidhur me kêtê sęmundje. Kjo gjetje êshtę kritike dhe duhet tê shërbejé si njē alarm pēr sistemin e kujdesit shēndetēsor dhe strukturat e shëndetit publik nē vendin tonế, nê mẻnyrê qĕ tẻ merren masat pèrkatése pèr tê adresuar nê mènyrèn e duhur kêtę problematike.
Pêrsa i pěrket kuadrit klinik tê fêmijève me KAD, nề studimin nê Kinẽ u raportua se fèmijêt me KAD kishin nể mênyrẻ domethènêse mê shumè tê ngiarề tê rapotonin tê vjella, dhimbje abdominale dhe lodhje, krahasuar me femijèt me DMTI por pa KAD
(652). Po kęshtu, njè studim midis fèmijève tê moshês 0-14 vjeç tê diagnostiknar me DMT1 nē Francé, raportoi se prevalenca e të vjellave ishte vetën 9.3% tek fëmijèt me DMTI pa KAD. por 33.2% tek fêmijèt me DMT1 me KAD tê moderuar dhe shume e larté (78.1%) tek femijèt me DMTI me KAD tę rēndé (612). Po kështu, një studim ně Belgjikè raportoi se prevalenca e lodhjes/pafuqisé ishtê né mẽnyrè domethênêse mé e larté tek fêmijest me DMT1 me KAD (83.8%) sesa tek fémijēt me DMT1 pa KAD (59.1%) (651) Kęto tẻ dhëna janč tê ngjashme me studimin tonẽ, ku prevalenca ekētyre gjendjeve eshtẽ gjithnjë mě e lartẻ midis fêmijëve me DMT1 me KAD krahasuar me fermijèt me DMT1 pa KAD, dhe pêrsa i përket prevalencës së të vjellave dhe lodhjes/pafuqisẽ, diferencat janẽ po ashtu statistikisht domethěnëse (tę vjellat: 24.5% tek fëmijët me DMT1 me KAD vs. 6.1% tek fëmijët me DMT1 pa KAD, $\mathrm{P}=0.007$; lodhja/pafuqia: $93,2 \%$ tek fèmijāt me DMT1 me KAD vs. 73.5% tek femiject me DMT1 pa $K A D, P=0.002$). Nga ana tjetër, prevalenca e konfivionit apo ndryshimit te vetëdijes rezultoi 12.2% midis fémijēve me DMT1 me KAD nē Arabinē Saudite (653), kurse nē studimin tonē ne evidentuam një prevalencë tē përgjithshme të kēsaj gjendjeje, nê nivelin prçj 14.5%, nề mēnyrē domethënēse mê c lartë tek fénujèt me DMT1 me KAD (21.4%) sesa tek fèmijèt me DMTI pa KAD (asnjè fèmijé), P<0.001. Prevalenca mé e lartē e eneurczis noktuma midis fëmijëve me DTM1 me KAD scsa tek fèmijët me DMT1 pa KAD, e evidentuar né studimin toné, raportohet edhe nể literaturèn ndeskombertare gjithashtu (612).
 DMT1 me ketoacidozē, duke pèrfshirè: prevalenoa e dehidrimit pothuajse 100%, prevalenca e poliurise pothuajse 90%, prevalenca e distresit respirator rreth 90%, prevalenca e polidipsisē rreth 78%, prevalenca e dobësisảllodhjes rreth 70%, prevalenca e dhimbjeve abdominale rreth 50%, prevalena e dëmtimit tè vetëdijes rreth 45%, prevalenca e humbjes sê peshés rreth 43%, prevalenoa e tê vjellave rreth 38%, prevalenca eneurezis nokturna rreth 19%, prevalenca e erës see acetonit rreth 12%, etj. (656).

Lidhur me vdekjen nga KAD, sic e thamë, ajo mund te shoqërohet me njè nivel vdekshmërie nën 1 pârqind ($\mathbf{3 5 5}, 656$), që èshtë njè nivel jo i neglizhueshèm. Njē studim nē Kinē raportoi njé nivel vdekshmërie nga KAD prej 0.04\% (657). Edhe studme nē vende të zhvilluara kanē raportura një prevalencē tè lartë të komas midis fêmijēve me DMT1. Kështu, njè studim né Francè midis 1299 fèmijëve tê moshès $0-14$ vjeç tê diagnostikuar me DMT1 raportoi se 5.6% e tyre ose 73 fémijè zhvilluan koma, 7 prej tè cilève zhvilluan koma tê rèndë, kurse humbja e vetëdijes u vu re në 0.3% tê paciente̊ve, me nivele shumề mẻ tę larta midis fêmijëve me DMT1 me KAD tê moderuar (3.4) dhe sidomos midis fémijëve me DMTI me KAD të rëndé (30.2%); megiithate, vdekshměria nga KAD tek fèmijèt diabetikê rezultoi shumé e ulèt nê Francę: midis 1299 têmijêve me DMT1, ndodhẻn vetěm 2 humbje jete, gjê qê
korrespondon me njè nivel vdekshmérie prej 0.15% (612). Sidoqofte, duhet theksuar se nivelii vdekshmërisē nga KAD midis fëmijēve diabetikē ēshtë shumè mẹ i lartè midis vendeve në zhvillim, duke variuar nga 6% ne 24% (656).
Nẽ studimin toné vdekshměria midis fèmijëve me DMT1 rezultoi 0.66% (1 person, vajzę humbi jetën giaté periudhès sẽ studimit). Sidoqofte kjo shifer èshtë e lartë krahasuar me studimin né Francẻ 0.15% [612] duke patur parasysh madhësinẻ e
 niveli i vdekshmëriser nga KAD midis fèmijëve me DMT1 né vendin tonẽ. Një pjesẻ e problemit vjen dhe për shkak tē paraçitjes shumë tê vonuar të fëmijēve me DMT1 pranë sistemit shéndetēsor, duke e rritur nẻ̉ kêtę mênyrể mundésiné e fatalitetit, prandaj, fushatat e ndërgjegjēsimit tē përmendura më sipēr mund tē jenë vecanêrisht të vlefshme dhe tē dobishme pēr shoqërinē Shqiptare si një masề shumë efektive për të parandaluar KAD tek fèmijët me DMT1, zbulimin dhe trajtimin e hershēm tè kēsaj giendjeje tē rezzkshme shēndetēsore.
Lidhur me shpērndarjen e KAD sipas moshës së fëmijēve diabetikë, nē studimin nê Arabinë Saudite 35.5% c fémijëve me DMT1 me KAD ishin 0-4 vjec, 31.4% në grupmoshën 5-9 vjeç dhe pjesa tjetër prej 33.1\% ishin $10-14$ vjeç (653). Njé tjetèr studim raportoi prevalencèn e KAD sipas moshēs së fèmuijēve me DMT1, në shifrat: 81.4\% midis fèmijëve nẻn 2 vjeç, 53.3% tek femijèt $2-4$ vjeç, 42.7% tek fèmijét 5.9 vjeç dhe 49.3% tek fëmijęt $10-15$ vjeç (652). Studimi né Belgikè raportoi se 24.3% e fëmijëve me DMT1 me KAD ishin 0-3 vjec, 12.2% ishin $4-5$ vjec, 31.1% ishin $6-10$ vjec dhe 32.4% ishin $\geqslant 10 \mathrm{vjeç}(\mathbf{6 5 1})$. Rezultate te̊ ngjashme u evidentuan edhe né studimin tone: $24.3 \%, 41.7 \%$ dhe 34%, pěrkatësisht. Nê pẻrgjithěsi, prevalenca e KAD tek personat me DMT1 ulet me rritjen e moshess ($\mathbf{6 5 0}$). Ne studimin tonể ne nuk gjetęm diferenca moshore statistikisht domethēnēse midis fëmijëve me DMT1 me dhe pa KAD ($\mathrm{P}=0.082$), kurse studimi nẻ Belgiikè sugjeroi se proporcioni i fèmijēve 0-5 vjeç éshtê nē mēnyrē domethēnēse më i lartë tek fèmijēt me KAD sesa tek ata pa KAD ($\mathbf{6 5 1}$).
Në studimin tonë ne evidentuam se prevalenca e KAD ishte mē e lartë midis vajzave (76.7%) sesa midis djemve (59.5%) dhe ky ndryshim ështé statistikisht domethēnés ($\mathrm{P}=0.025$). Prevlenca mē e lartē e KAD midis vajzave me DMT1 sesa midis djenve me DMT1 raportohet dhe nè literaturēn ndërkombëtare. Për shembull, një studim i madh i tipit kohort retrospektiv në SHBA që përfshiu tē dhënat e mē shumē se 263 milion pacientēve Amerikané nga tẽ 50 shtetet Amerikane qę nga viti 1995, arnit tê identifikonte tê giitha rastet me DMT1 të té giitha moshave për periudhèn 1 Janar 2007 deri nē 31 Dhjetor 2019 , duke béré tè mundur, midis tę tjerave, llogaritjen e incidencěs sé KAD-it nê këta pacienteٌ, sipas kêtij studimi, incidenca e KAD-it gjaté kësaj periudhe rezultoi 48.6 raste pèr 1000 person-vite tek meshkujt dhe 62.9 raste per 1000 person-vite tek femrat (659). Ne studimin midis 311 fèmijëve me DMT1, prevalenca e KAD rezultoi nê mëtyrẻ domethënëse mě e lartë midis vajzave sesa midis djemve, gjetje kjo qể éshtë nế
pérputhje me gjetjet e studimit toné ku prevalenca e KAD rezultoi githashtu nẽ mẽnyré domethënëse mê larđē tek vajzat sesa tek djemtē (653). Njè rishikim sistematik i literaturés, i botuar kohët e fundit (në vitin 2017), githashtu raportoi se prevalenca e KAD eshtẽ mẽ e lartẽ midis femrave sesa midis meshkujve, dhe mé konkretisht tek femrat prevalenca e KAD rezultoi 55 raste pér 1000 person-vite kurse tek meshkujt ishte 40 raste per 1000 person-vite (650), nẻ mĕnyrè tẻ ngjashme me gjetjet e studimit toné. Njé tjetēr studim giithashtu raportoi se reziku i ketoacidozẽs diabetike (KAD) ēshtê rreth 1.5 herê mé i lartè midis vajzave adoleshente sesa midis djemve, njé hipotež̉e e lidh kêtę gjetje me cēshtje të imazhit trupor tē këtyre vajzve që i shtyn ato të anashkalojne injeksionet e insuliněs si njẻ měnyrě pĕr té nxitur humbjen e peshěs ($\mathbf{6 6 0}$).
Megiithatē, ka edhe studime të cilat nuk kane gjetur ndonjê diferencé giinore tê KAD tek fèmijz̄t me DMT1 ($\mathbf{6 5 1 , 6 6 1)}$.
Lidhur me histonine familjare midis fëmijëve me DMT1 me KAD dhe pa KAD, nuk vihen re diferenca statistikisht domethēnēse midis tè dy grupeve (shih Tabelën 17), nē pêrputhje me raportimet e literaturës ndërkombëtare (652).
Lidhur me kuadrin klinik, duket se prevalenca e tê vjellave, lodhjes/dobēsisë, encurczis noktuma the dhimbjeve abdominale janể èshtê mê e shpeshtẽ midis fêmijẽve me DMT1 me KAD krahasuar me fémijēt pa KAD; prandaj êshtë e rëndësishme qē si prindęrit ashtu edhe stafi shëndetësor tę jetę i ndèrgjegjshèm lidhur me simptomat tipike dhe mẽ pak te̊ zakonshme tẻ DMT1 tek fèmijęt, duke qẻnne se njohja e hershme e sémundjes con nể nję diagnozž mê tê shpejtê nē kohê, e cila nga ana tjetềr minimizon rrezikun e zhvillimit tê ketoacidozẻs diabetike tek kêta fèmijè (652). Nę kẻtè kontekst, për tề ritur ndërgegegiesimin meth simptomave teٌ DMT1 dhe komplikacioneve tê ndryshme akute tę kēsaj sēmundjeje, janê rekomanduar fushata ndërgjegjësuese dhelose edukuese pēr komunitetin, prindërit dhe stafin shëndetësor, pēr tē parandaluar KAD-in (662, 663, 664). Fushata teß tilla kanè rezultuar efektive nẻ uljen e konsiderueshme të incidencẻ̉s sē KAD-it nē momentin e diagnozès së DMT1 tek fêmijèt e prekur (663,665). Strategjia kyce pēr një fushatētë suksesshme në këtē drejtim duket se ështē bashkëpunimi i ngushtē midis familjes, mēsuesve dhe profesionistēve tē kujdesit shēndetēsor, the vecanērisht të profesionistève që punojnë nē kujdesin shēndetēsor parësor duke përfshirè pechatrit e familjes, etj.
Pērrsa i pērket krahasimit të parametrave të̈ ndryshëm laboratorikë midis fënijēve me DMTI me KAD dhe pa KAD, tê dhĕnat e studimit tone evidentuan disa parametra tê cilët ndryshonin nē mēnyrē domethënëse midis këtyre grupeve. Në mēnyrē të ngjashme me studimin toné, ku vlera mesatare e bikarbonateve (HCO 3) ishte nê mënyré domethënëse mẻ e lartë midis fèmijëve pa KAD (vlera mesatare 19.9) sesa tek fèmijët me KAD (vlera mesatare 8.7), P<0.001, njè studim midis fèmijēve tê diagnostikuar rishtas me DMT1 gjatè njé periudhe 10 -vjeçare nê Kinẻ raportoi se niveli mesatar i HCO3 ishte $10.9 \mathrm{mmol} / 1$ tek fémijett me DMTI me KAD dhe 21.1 mmoll tek fèmijèt
me DMT1 pa KAD, $\mathrm{P}<0.001$ (652). Po kèshtu, studimi nẻ Belgiikẽ raportoi se vlera mesatare e HCO 3 ishte $7.9 \mathrm{mmol} / \mathrm{tek}$ femijēt me DMT1 me KAD dhe $22.5 \mathrm{~mm} / \mathrm{m} / \mathrm{tek}$ fèmijest me DMT1 pa KAD, P <0.001 (651)
Po ks̉shtu, studimi né Kinè raportoi se vlera mesatare e pH tek fèmijêt me DMT1 me KAD ishtê nê mènyrè domethënëse mĕ e ulêt sesa tek fèmijêt me DMT1 pa KAD (vlera mesatare e pH: 7.22 dhe 7.39 , përkatěsisht, $\mathrm{P}<0.001$) (652). Në mẽnyré té ng jashme,
 domethěnëse mẽ tẽ ulēt midis fęmijēve me KAD (vlera mesatare e pH: 7.17) sesa tek fërijët pa KAD (vlera mesatare e pH: 7.37), $\mathrm{P}<0.001$ (651). Kjo gjetje është krejtësisht e ngjashme me studimin tonẻ ku vlerat mesatare té pH -it midis fèmijève me DMT1 me KAD dhe pa KAD ishin, përkatēsisht, 7.2 dhe 7.4 ($\mathrm{P}<0.001$).
Lidhur me hemoglobinēn e glukozuar, të dhēnat e studimit midis fèmijēve me DMT1 në Kinē raportuan një vlerë mesatare të ngjashme të kētij parametri tek fèmijët me DMT1 me dha pa KAD (12.57% dhe 12.37%, përkatësisht, $\mathrm{P}=0.210$), pa ndryshime statistikisht domethënëse midis tē dy grupeve (652). Po kështu, studimi nē Francë raportoi se niveli i HbA1C tek fémijët me DMT1 pa KAD ishte 11.3\%, kurse tek fémijët me DMTI me KAD tě moderuar ishte 12.1% dhe po kaq (12.1%) ishte edhe tek fèmijët me DMT1 me KAD tê rëndë (612). Këto gietje janë krecjtēsisht e ngjashme dhe e krahasueshme me vlerat mesatare ně studimin tonè (119% dhe 11.1%, përkatësisht, $\mathrm{P}-0.195$). Ndęrkohě, studimi nẻ Belgjike raporti se vlera mesatare e HbAl c tek fémijët me KAD ishte 11.8% kurse tek fèmijet pa KAD ishte $11 \%, \mathrm{P}<0.001$, duke sugjeruar njè kontroll mê tê disfavorshêm tê sèmundjes tek fèmijèt me DMT 1 me ketoacidozê (651), në̀ mënyrể te̛ ngjashme me raportimin e një studimi tjetęr (niveli mesatar i HbAlC 9.9\% tek fermijèt me KAD dhe 8.5\% tek fëmijet pa KAD, P <0.001) (666).
Nē studimin tonë rezultoi se 71.26% e pacientēve rezultuan pozitiv për
ac.anti GAD65 dhe 86.11% rezultuan pozitiv per ac anti IA2. Dhe muk rezultoi staistikisht domehtēnëse midis fëmijëve me DMT1 me dhe pa KAD. Kēto gjetje në studimin janë plotēsisht të ngjashme ato të raportuara nē literaturēn ndërkombētare.[671]
Pērsa i pērket ecurisē në kohë tē HbAlc tek fèmijët me DMT1 me the pa KAD, pas vendosjes së diagnozēs, në studimin tonë ne evidentuam një përmirēsim tē qartë tê kētij parametri tek fëmijèt pa KAD duke filluar 3 muaj pas diagnozés dhe, pavarësisht Iuhatjeve, pas muajit tee 12 e né vazhdim vlera e kêtij treguesi uelet né mènyrè monotone dhe mbetet mjaft e ulēt edhe 5 vjet më pas, duke dèshumar niè kontroll të mirë tē glicemisé; ndërkohẻ, tek fèmijēt me KAD ky parametęr mbetet nê nivele shumẽ te larta gjatẻ te giithe kohẽs, edhe 5 vjet pas vendosjes sê diagnozẻs, duke dëshmuar pẽr një kontroll mê tè disfavorshèm tě glicemisé tek kêta pacientě, Qẻ kětej, èshté e qarté se prania e KAD-it nể momentin e diagnczęs sê DMTI shoqërohet me një pērkeqêsim tê kontrollit tè glicemisé përgatë̀ kohés, Një gjetje e tillé mbéshtetet dhe nga studimet e
realizuara ně shtetet tê tjera, ku věrehet njé uljee nivelit tẽ HbAlc gjatê vitit tê parě pas diagnozës, dhe mē pas vērehet një mitje e nivelit tê këtij parametri ($666 ; 667$). Sipas raportimeve të literaturës nderkombětare, efekti negativ i KAD-it nẻ kontrollin e glicemise esshtè i pavarur nga faktoret demografike, socioekonomikẻ dhe faktorest e lidhur me trajtimin (666). Késhtu, njé studim raportoi se pèr codo vit shtesê tè jetuar me diabet, te rinjte me KAD kishin nivele të HbAlc 0.18 njési mè tę larta krahasuar me te rinjtë me DMT1 pa KAD, P<0.001; kjo lidhje ishte e pavarur nga mosha ně diagnozes, gjinia, etnia, teٌ ardhurat familjare, statusi i siguracioneve shëndetẻsore, regimet insulinike the aktivitetet e monitorimit té nivelit të glukozës, qendrēs sē studimit dhe kohězgjatjes sę diabetit né vlerěsimin fillestar (666). Studimi gjithashtu raportoi se nivelet e HbAlc ishin mē tē ulēta tek tê rinjtē e farniljeve me të archura tê larta, ata qē kishin siguracione shēndetēsore private, dhe tek meshkujt, nga ana tjetër, studiuesit evidentuan se nivelet e HbAlc rriteshin me uljen e shpeshtësisë sē testimi tē glukozēs nē momentin fillestar tê vlerësimit dhe mbetën të larta gjatë tē giithê kohēs sē ndjekjes; po kēshtu, nivelet e HbAlc ishin 0.15 njēsi më tē ulēta tek tè rinjtë qē pèrdomuin njē pompé krahasuar me ata që injektonin insulinën dhe nivelet e HbAlc ishin 0.18 njēsi mê tể ulěta pér cdo I ng'mL rritje tę peptidit C nề momentin fillestar tę vlerèsimit, pas kontrollit tê gjendjes sē KAD nē momentin e diagnozēs (666). Ēshtē e qartê se prania e KAD-it në momentine diagnozĕs sĕ DMT1 nuk ēshtê vetëm nję komplikacion akut por gjithashtu êshtẽ njẽ faktor rreziku pêrr pērkeqẽsimin afat-gjatê tê kontrollit glicemik.
Kontrolli i mirë glicemik s̈shtẻ shumẽ i rẻndèsishëm për pacientēt me DMT1, dhe sidomos tek pacientèt me DMT1 me KAD. Shumé studime kané evidentuar rolin e kontrollit tę dobẻt glicemik nẽ zhvillimin e komplikacioneve kronike tę lidhura me diabetin: kontrolli i dobět glicemik kontribuon nẻ praninẻ e kẻtyre komplikacioneve në fazat e hershme të sēmundjes dhe vazhdimine tyre edhe përgiatē shumē viteve nē vijim (666). Kěshtu, nivelet e larta te HbAIc-sẽ nẻ pesẻ vitet e para te̊ instalimit tê DMT1 nể fēmijëri ështē njē faktor reziku pēr mikroalbuminurinë dhe retinopatinē gjatē fazēs adulte të jetës dhe madje edhe ndryshimet minimale tè nivelit tē HbAlc-së mund tē pērkthehen nē reduktime tè ndjeshme të rrezikut për zhvillimine këtyre ngjarjeve (666). Studimet ndërkombëtare sugjerojnē se vlera mesatare e pH-it dhe HCO 3 -it lidhen nē mënyrē inverse me ashpērsinẻ e KAD-it, pra sa mẻ e ashpēr ēshtë ketoacidoza diabetike aq më shumê ulet vlera mesatare e pH -it dhe bikarbonateve, kurse lidhja midis ashpèrsise se KAD-it dhe nivelit tè HbAIC-sés nuk paraqet ndonje trend të qartè (652), Lidhur me ketonurinë dhe glukozuriné, në studimin tonë ne evidentuam qẻ̉ rumri i
 midis fèmijêve me DMT1 me KAD sesa tek fèmijêt me DMT1 pa KAD. Kêto gjetje kontirmohen dhe nga literatura ndërkombëtare. Perr shemball, stadimi nè France midis 1299 fermijẻve tẻ moshẻs 0-14 vjeç tẻ diagnostikuar me DMT 1 raportoi se prevalenca e ketonurise ishte 83.6% tek femijet me DMT1 pa KAD por varionte midis $98 \%-99 \%$ tek
fèmijét me DMT1 me KAD tê moderuar dhe tê rēndè (612). Né mẽnyrê tê ngjashme, studimii né Belgjikē raportoi se prevalenca e ketonurisê ishte 98.5% tek fémijèt me DMTI me KAD kundrejt njé prevalence prej 74.5% tek fèmujĕt me DMT1 pa KAD. dhe ky ndryshim ishte statistikisht domethěnése ($\mathrm{P}<0.001$) (651).
Lidhur me nivelin e C-peptidit, ne studimin tone ne muk evidentuam diferenca statistikisht domethěnड̈se tę kětij parametri midis fëmijěve me DMT1 me dhe pa KAD, kurse nề studimin nê Belgikē vlera mesatare e kētij parametri laboratorik rezultoi nê
 DMT1 me KAD ($0.4 \mu \mathrm{~g} / \mathrm{L}$ vs. $0.2 \mu \mathrm{~g} / \mathrm{L}$, pêrkatēsisht, $\mathrm{P}<0.001$) ($\mathbf{6 5 1}$) dhe po tendenca tê ngjashme u raportuan edhe nga njés studim tjetęr midis fèmijěve me DMT'l me KAD dhe pa KAD (660).
Gjithashtu, nē studimin tonê ne evidentuam se niveli i glicemisē ështē nê mënyтē statistikisht domethënēse mëi lartè midis fêmijëve me DMT1 me KAD sesa tek fèmijët me DMT1 pa KAD, njē gjetje kjo q̨ë mbështetet nga studimet nē arenën ndērkombētare. Pēr shembull, në studimin në Francë midis 1299 fëmijëve të moshēs $0-14$ vję̧ tē diagnostikuar me DMT1 u raportua se vlera mesatare e glicernise ishte $23.9 \mathrm{mmol} / \mathrm{L}$ tek fëmijêt me DMT1 pe KAD, duke u ritur ne $29.8 \mathrm{mmol} / \mathrm{L}$ tek fémijett me DMT1 me KAD tē moderuar dhe rritcj edhe mē tej, në nivelin 32.7 mmol/L, tek fémijët me DMT1 me KAD tê rêndè (612).Nẻ mēnyrę tê ngiashme, studimi nê Belgiikē raportoi njè nivel glicemie nẽ měnyrè statistikisht domethẽněse mê tę lartê midis fèmijẽve me DMT1 me KAD (nivel mesatar iglicemisĕ: $540 \mathrm{mg} / \mathrm{dL}$) sesa tek fèmijḕt me DMT1 pa KAD (niveli mesatar i glicemisé: $478 \mathrm{mg} / \mathrm{dL}$), $\mathrm{P}=0.001$ (651).
Në përfundim, duhet theksuar se parandalimi i KAD tek fèmijèt e prekur nga diabeti mellitus tip 1 duhet teß jetē një̆ prionitet për sistemin shēndetēsor tę vendit tonë. Me rēndësi ështē qē të aplikohen në mēnyrè korrelte kriteret pēr diagnostikimin e ketoacidozés diabetike, pasi kjo èshtè njé piké kyoe pèr llogaritjen dhe raportimin e saktë të kësaj gjendjeje shëndetësore të rēndēsishme midis fëmijēve diabetikë, duke siguruar dhe krahasueshmērinë e mirē tē tē dhënave tona me ato tē raportuara nē arenēn ndërkombētare. Prevalenca shumē e lartē e ketoacidozës diabetike midis fèmijēve me DMT1 në studimin tonë me shumë gjasa justifikon ndērmarrjen e fushatave tē shēndetit publik me qëllim parandalimin e KAD-it në momentin e diagnozēs sē DMT1, duke ndjekur shembullin e fushatave tē ngjashme tē ndërmarra nē shtete tē tjera të Evropës, si pér shembull né Itali ($\mathbf{6 6 8}$), sic e kemi pérmendur mě heręt në kêté punim shkencor. Nè mēnyēr tē ngjashne me rastin e Italisé, ku prevalenca e lartè e eneurezis nokturna, poliurisé dhe polidipsisě u bën shkas pér fillimin e fushatave ndërgjegjësuese, tè dhènat shqetēsuese tê evidentuara nē studimin tonẻ (99.3% prevalenca e poliurise, 99.3% prevalencae polidipsisé, rreth 20% prevalenca e eneurezis nokturna) mund tě shërbejné si njè pikẽnisje pẻr fillimin e ndèrmarrjes sê fushatave tè tilla ndërgjegjësuese. Përvec késaj, edhe prantia e shenjave dhe simptomave tě tjera tê tilla si dhimbjet abdominale,
humbja e vetëdijes, konfuzioni, tē vjellat, distresi respirator, etj.) duhet tê njihen miré nga stafi i kujdesit shëndetësor ç̈̈ mund tē jenë pjesë e kuadrit klinik të DMT1 nē mënyrë qĕ tẻ shmanget diagnozat e gabuara tę cilat mund tę vonojnê diangozẽn e DMT1 dhe fillimin e menjēhershěm tê trajtimit teٌ pコ̈rshtatshëm, pasi kęto shënja đhe simptoma janê tregues te̊ ashpersisê sê sëmundjes dhe tê njé urgience tê madne mjekèsore. Mesazhi duhet tě jetẽ i qarteß, sidomos pêr profesionistět e kujdesit shěndetęsor që trajtojnê kèta fèmijè: sa mè shpjet tę vendoset diagnoza, aq mè e ulèt do tẽ jetē shpeshtësia e ketoacidozës diabetike tek kêta fëmije
Shpeshtësia e përgithshme e sëmundjeve autoimune bashkēshoqëruese të DMT1 gjatë periudhés se己 studimit ishte 25.65% (391152), prej te cilěve 64.1% (25/152) ishin femra (tabela 22). Tè dhēnat tona ishin të ngjashme me tē dhènat e literaturēs ndērkombētare. [672-674] Në momentin c diagnozës së DMT1 për herē të parë 16.45\% (25/152) fëmijë kishin sëmundje autoimune shoqēruese: 21/152 (13.81\%) femije kishin sënundje autoumine te gi.tiroides dhe $4 / 152$ (2.63%) SC. Prej ketyre 52% u prezantuan me KAD; 68% ishin ferra. Sipas grup-moshēs specifike; $2 / 24$ ishin te grup moshē $0-4$ vjeç, $15 / 24$ te grup moshes 5-9 vjeç; dhe $9 / 24$ te grup moshês $10-15$ vjec. Ne momentin e diagnozēs midis fêmijève me sëmundje autoimmune tê tiroides $11 / 22$ u prezantuan me KAD, 4\% efemijeve kishin TSH > $5 \mathrm{UI} / \mathrm{ml}$ dhe 13.16% femije ishin ac anti-TPO pozitiv, 80% e
 dhënat e literatures. [675] Prej tyre 15/21 ishin vajza dhe 5/21 ishin djem.
Shpeshtüsia e lartẻ e SC nê fèmijět me DMT1 ěshtē raportuar gjerêsisht nê literaturën ndèrkombêtare. Nề pěrgjithèsi DMT1 nê 90% tè rasteve diagnostikohet pêrpara SC. [510] Nẽ studimin tonee nē momentin e diagnozẽs se DMT1 bazuar nẽ vlerèn e ritur tě antikorpeve anti anti-rTG IgA dhe anti-tTG $\lg \mathrm{G} u$ diagnestikuan 4 paciente (2.63%), 2 vajza dhe 2 djem, $1(6.6 \%)$ prej tē cilēve, mosha 1.4 vjeç i parapriu diagnozēs sē DMT 1 me 4 muaj. Gjatẽ periudhës sê studimit zhvilluan sêmundje autoimune bashkë shoqeruese SAT dhe SC 12 femije; 8 fèmije zhvilluan SC dhe 4 SAT. Sēmundja e SC u shfaq nē 2.54 vitet e para te diagnozēs. Po kēshtu edhe SAT u shfaq 2.19 vitet e para pas diagnczës. Tè dhënat e studimit rezultuan të ngjashme me tē thënat e literaturës.[478,676] Midis fëmijēve në studim vetē 1 subjekt shfaqi SAT dhe SC; Hashimoto 1.023 vjet edhe SC 4.11 vjet pas dagnozzës së DMT1. Fëmijët dhe adoleshentēt diagnstikuar me DMT1 nē 62% tè rasteve shfaqin antikorpet e SC brënda 2 viteve tê para tê shfaqies sę diabetit dhe nẻ 79% të rasteve brënda 5 viteve të para pas diagnozès sè DMT1 dhe mē pak pas kēsaj periudhe (509). Të dhëna të ragashme rezultuan edhe nê studimin tonẻ ku 2.63% shfaèn SC u diagnostikuan nê tê njèjtęn kohê me diabetin dhe 78.95% e tyre 2.54 vjet pas diagnozès se diabetit. Ndêrmjet fermijève me ac anti-TTG IgA positive, 2 prej femijëve qes i nẽnshtruan biopsisë rezultuan 1 march 0 the 1 march M3a.
Vlerat mesatare ně momentin e diagnostikimit tẻ TSH ($\mathrm{p}=0.693$), FT4-es ($\mathrm{p}=0.829$);

TPO-sé ($\mathrm{p}=0.224$) ; dhe anti-tiroglobulinés ($\mathrm{p}=0.885$) dhe giate ecurinè ne pika kohore tê ndryshune midis femijève me DMT1 me KAD dhe pa KAD nuk ka ndryshime statis tikisht domethënesse. Po keshtu, edhe vlerat mesatare te antikorpeve anti transglutaminazer indore TG-lgA (p-0.066) dhe anti-TG-IgG (p-0.082) midis fermijëve me DMT1 me KAD dhe pa KAD si ne momentin e diagnostikimit the giatẽ ecurinë nể pika kohore té ndryshme nuk u gjetén ndryshime statistikisht domethëne̊se. Sè fundmi,gjatê periudhès sę studimit nuk u shfaqęn sẻmundje autoimune te tiera krahas SAT che SC
Nē bazē tē eksperiencave tē shteteve të tjera, fushatat ndërgjegjësues duhet qē tē
 dy palēt tē jenë né giendje të zbulojné herët shenjat dhe simptomat e sëmundjes si the tē̃ veprojnē nē mēnyrē të shpejtē me shfaqien e hershme të tyre. Lidhur me kētë pikë, është e rëndēsishme të bēhet e qartè se mbēshtetja tek elzaninimet laboratorike të mostrave biologjike për të vendosur herōt diagnozēn e DMTI nuk janē tē rekomanduara pasi tê dhënat sugjerojnë se këto ekzarninime, në fakt, mund tè vonojnë trajtimin e DMT1 duke u shndērruar nê njê faktor rreziku pēr praninẽ e KAD nē momentin e diagnozës sse DMT1 (173, 669, 670). Megjithatẽ, një test ithjeshtè dhe i shpejtě i pranisé sē glukozēs nē uriné ose nē gjak ështē rjḕ tregues i qartē i nevojēs pēr ta dērguar fèmijēn nê spitalin më tē afërt dhe pa humbur asnjë minutę kohẻ, Fushatat ndẽrgjegjësues natyrisht duhet tę vlerěsohen me kujdes lidhur me faktorèt që mand tẽ ndikojnẽ nê suksesin e tyre. Këtu mund t'i referohemi studimeve qê sugjerojne̊ se pêr menaxhimin e KAD-it jane̊ tê rèndessishme edhe faktorê tê ndryshěm socio-ekonomikẻ dhe faktore qẽ kanē tê bęjně me menaxhimin klinik tě sèmundjes, sic e evidentuam mě herềt gjatê kêtij punimi shkencor; dhe pikērisht këta faktorę mund tẻ shēnjestrohen nga ndërhyrje tē ndryshme pēr tē mundēsuar reduktimin e kontrollit të dobēt të glicemisē tek këta pacientè, bazuar nê faktet shkencore qẻ sugjerojnê ndikimin pèrkeqësues tè kêtyre faktorḕve psikosocialē qē lidhen me kontrollin e dobēt glicemik tek tē rinjtē me DMT1.

KAPITULLI VI. KONKLUZIONE

Duke u bazuar ně gietjet tona dhe diskutimin e rezultateve, konkluzionet e studimit aktual mind tê përmblidhen si vijon:

- Mosha mesatare e fèmijēve tẽ diagnostikuar pēr herẻ té parẽ me DMT1 ēshtë 8.3 vjeç dhe tre te katęritat e femijē̃ve me DMTI banojnè nê zonat urbane.
- Gati dy nē dhjetë fénijē tē diagnostikuar përfundimisht me DMT1, fillimisht nuk dyshohen se janē të prekur nga kjo sēmundje; kjo është njē gjetje qē mund tę ketě implikime tę rêndêsishme pêr personelin e kujdesit shẽndetěsor.
- Mē shumẽ se dy nê tre (67.8%) fémijè paraqesin ketoacidozë diabetike nē momentin e dagnozẻs sě DMT1, duke nënkuptuar nję mungesê tê qartẻ tê ndërgiegjësimit tè familjeve dhe stafit tè kujdesit shåndettesor lidhur me shenjat e hershme tę kętij komplikacioni. Edhe kjo gietje mund tẽ ketê implikome tê ręndësishme, duke patur parasysh rrezikun që paraqet prania e KAD-it nē ecurinë e mëtejshme të fēnijēve me DMT1.
- Rreth 1 nē 5-6 fèmijē me DMT1 kanẻ histori familjare pozitive pēr DMT1 ose DMT2 kurse prevalenca e infeksioneve virale shpērthyese midis fèmijēve me DMT1 ēshtè rreth 24%.
- Mesatarisht kalojné rreth 23 dité për tē diagnostikuar diabetin mellitus tip 1 tck fēmijēt e prekur nga kjo sēmundje.
- Rreth 6 nẽ 10 fëmijët me DMT1 dagnostikchen nẽ̉ stinẽ̃n e vjeshtés dhe dimrit dhe pjesa tjetěr prej 39.5% diagnostikohen me DMT1 ne pranverč-veré.
- Triada klasike e diabetit ēshtê e pranishme nê pothuajse tê gjithẻ fêmijēt me DMTI dhe kjo gjetje ka gjithashtu implikime të rèndësishme për familjet e fêmijëve me DMT1 dhe profesionistët e kujdesit shêndetësor giithashtu.
- Pacientẻt pediatrikẻ me DMT1 mund tê shfaqin nje tablo tẻ pasur klinike, ku dominojnë prania e lodhjes dhe pafuqisë nee pothuajse 90% të tyre, distresi respirator, rënkimet, dispnea, përgjumja, të vjellat, etj.
- Prania e KAD shoqērohet me njè kuadēr klinik më tê pafavorshēm krahasuar me femijèt me DMT1 pa KAD lidhur me eneruezis nokturna, dobẻsinëlodhjen, tę vjellat, eress sẻ acetonit, distresit respirator, ręnkimeve, dispnesë, pergjumjes dhe konfuzionit.
- Prevalenca e kandidozës orale, distresit respirator kusmanl, rènkimeve, dispnese dhe edemes cerebrale/komès ulet me ritjen e moshés se fènijëve me DMT1.
- Mesatarisht, fermijèt me DMT1 kané përjetuar rreth 2.7 episode glukozurie dhe 2.8 episode ketonurie deri nē momentine diagnozës fillestare tè DMT1,
- Prevalenca e KAD-it ēshtë mé e lartẽ tek vajzat.
- Nê pěrgithèsi, fèmijĕt me DMT1 me KAD diagnostikohen mê herêt sesa fëmijët me DMT1 pa KAD, ndoshta për shkak tę klinikës mẽ të shprehur tẽ tyre.
- Numri mesatar i episodeve te glukozurise the ketonurisé, si dhe vlera mesatare e glicemisē, $\mathrm{pH}-\mathrm{it}, \mathrm{HCO} 3$, the triglicerideve ështē më e lartë midis fèmijëve me DMT1 me KAD krahasuar me fèmijèt me DMT1 pa KAD.
- Diferenca statistikisht domethënëse u evidentuan për vlerēn mesatare të kreatinemisé (mosha 5-9 vjeç paraqiti vlerën mesatare mé tè lartè), natremise (trend linear pozitiv me rritjen e moshës) dhe C-peptidit (mosha $5-9$ vjeç paraqiti vlerën mesatare mê tẻ larte).
- Midis fěmije̊ve me DMT1 me KAD, prevalenca e KAD tê ręndê rezultoi 38.6%, prevalenca e KAD tė moderuar rezultoi 15.9% dhe prevalenca e KAD tê lehtê rezultoi 29.5%, bazuar nẽ pH venoz; kurse bazuar nẽ nivelin e HCO 3 serike, prevalencat përkatëse janë: $34.9 \%, 34.9 \%$ dhe 27.9%.
- Gjinia femèr dhe mosha 0-4 vjec janẻ tê lidhur me rritjen domethênêse tê gjasave pēr praninë e KAD tek fëmijēt me DMT1. Po kēshtu, gjasat e KAD-it miten nē mēnyrë domethënēse tek fèmijët me DMT1 që paraqesin eneurezis nokturna, dobēsiflodhje, tē vjella, erë aceton, dhe përgjumje.
- Gjasat e KAD-it rriten nē mēnyrē domethēnëse me ritjen e numrit tē episodeve tê ketonurisé dhe glukozurisé, the ritjen e nivelit te glicemise, triglicerideve; njē lidhje negative u vērejt me nivelin e pH -it dhe HCO 3 .
- Ecuria e HbAlc nẻ kohe̊ éshtè mê e pafavorshme tek fèmijĕt me DMTI me KAD krahasuar me fêmijêt me DMT1 pa KAD.
- Niveli i vdekshmērisë nga KAD midis fèmijēve me DMT1 në studimin tonē e shte 2.9%.
- Shpeshtesia e autcantikorpeve anti ishullor rezultoi pozitiv 71.26% per ac.atti GAD65 the 86.11% per ac anti IA2.
- Shpeshtesia e sêmundje autoimune, bashkẻshoqêruese, né momentin e diagnostikimit tê DMT1 pêr here té pare dhe giate monitorimit te tij rezuitoi: 24.34% ($37 / 152$), prej te cilave 16.45% rezultuan me semundje autoimmune te gig.tiroide dhe 7.89% me sěmundjen celiake. Gjinia femerore rezultci me e prekur, 64.1%. risku pêr tê zhvilluar SAT CD dshtē mé i madh brènda 2-3 viteve tê para pas diagnotikimit te DMT1

KAPITULLI VII．REKOMANDIME

Bazuar nè rezultatet dhe konkluzionet e këtij punimi shkencor，ne rekomandojmě si vijon：
－Diagnoza e DMT I duhet tè dyshohet gjithnjë tek fèmijēt e vegjë，kur shenjat dhe simptomat klasike te diabetit janè te pranishme．Ky rekomandim merr nje rëndësi edhe mè të madhe nē kontekstin kur incidenca e DMTI tek moshat e vogla ēshtë nē rritje．Vèmendja e shtuar ndaj diagnozzës potenciale tē DMTI do të mundēsonte kapjen e hershme të sëmundjes edhe né rreth 20% të fermijëve me DMT1 ku diabeti nuk dyshohet fillimisht．
－Prevalenca shumé e lartê e KAD midis fémijève me DMTI sugjeron nevojèn pēr ndärgjegjësimin e familjes lidhur me simptomat tipike dhe ato mē pak tē zakonshme tě DMT1 tek fèmijët；diagnoza mè e shpejtè mund tè minimizojé rrezikun e zhvillimit teß ketoacidozess dhe komplikacioneve te lidhura me te．
－Prania tek femijēt e shenjave dhe／ose simptomave tę tilla si lodhja／doběsia，dis－ tresi respirator，rẽnkimet，dispnea，përgiumja，dhe／ose të vjellat duhet teٌ shērbejē si njē sinjal alarmi pēr profesionistët e kujdesit shēndetēsor nē drejtim tể përfshirjes sê DMTI nê listěn e diagnozave potenciale tek këta fêmijě； dēshtimi pêr ta bērè kētē mund tē vonojë diagnozēn e DMT1 dhe tê rrisé rrezz－ kune zhvillimit të ketoacidozèd diabetike．
－Prania e eneruezis nokturna，dobësisēflodhjes，të vjellave，erës sē acetonit，dis－ tresit respirator，rēnkimeve，dispnesë，përgjumjes dhe konfuzionit duhet të zgiojë̀ vëmendjen e profesionistëve tę kujdesit shëndetësor lidhur me praninë potenciale të KAD－it nē terrenin e fëmijëve të prekur nga DMT1．
－Profesionistĕt e kujdesit shåndetěsor duhet te⿱丷天 keně parasysh faktin qẽ ketoacidoza diabetike ka mè shumé gjasa tẻ shfaqet tek vajzat sesa tek djemtẻ si dhe tek fèmijèt 0－4 vjeç krahasuar me fèmijèt e moshave mê tê ritura．
－Strategiia kyce pěr njẻ fushatẽ tẽ suksesshme ndêrgiegjẽsimi ështẽ bashkëpunimi i ngushtē midis familjes，mēsuesve the profesionistëve tē kujdesit shēndetësor，the vecanënisht tē profesionistēve që punojnē në kujdesin shēndetēsor parësor duke përfshirē pediatrit e familjes，etj．
－Duke qënē se ccuria e parametrave laboratorikë të pacientëve me DMT1 me KAD éshtę mê e disfavorshme sesa tek fémijêt pa KAD ，nevoja pẻr zbulimine hershëmtë DMT1 dhe parandalimit té instalimit tè ketcacidozës diabetike bëhet edhe me e rëndésishme．
－Ēshté e rêndésishme qê té hetohen nẻ detaje rastet e diagnozés sé vonuar te DMT1，duke i＇ureferuar rasteve kur koha e diagnozés êshtê mbi kohënmesatare tê diagnozàs；kjo do tê mund tě identifikonte faktorēt pěrgjegiés pe̊r kêtë
diagnozẻtẽ vonuar dhe rrjedhimisht propozimin e masave pèr shmangiene kětij fenomeni.

- Studime tẽ tjera mêtẽ thelluar mund tẽ ndêrmerren nê Shqipéri për tẻ eksploruar điagnozzen mé tẻ shpeshté te DMT1 giaté stinève tê ftohta tẻ vitit, dhe duke e lidhur potencialisht me prevalencẽ̃n e infeksioneve virale, nĕ mẽnyrẽ teß ngjashme me stuđimet nê arenèn ndërkombētare. Kjo do tẻ shẻrbente pèr ndricimin mé tē mirë të faktorëve të lidhur me DMT1 tek fëmijët në vendin tonē the marrien e masave perkatesse.
- Bazuar në́ nivelin e lartē të vdekshmērisê nga KAD midis fèmijëve diabetikë nē studimin tonë, rrjedh se duhet të bëhet c"ēshtë e mundur që të ulet ky nivel vdekshmërie. Midis masave që mund të merren, ndērgiegjësimi i prindërve mund tẽ jetë një pikë kyce qẽ mund tē cojẽ në diagnozê tē hershme dhe trajtim tę përshtatshëm. Natyrisht, mitja e kapaciteteve diagnostikuese dhe trajtuese është një nevojë e padiskutueshme.

REFERENCAT

1. World Health Organization. Definition, Diagnocis and Classification of Diabetes Mellitus and its Complications. Report of a WHO Consultation Part 1: Diagnosis and Classification. WHO/NCD/NCS/99.2. 1999. Geneva, World Health Organization.
2. American Diabetes Association Diabetes Care 2015 Jan, 38(Supplement 1): S8-S16.https://doi.org/ $10.2337 /$ de15-S005
3. Atkinson MA, Maclaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med 1994; 331:1428.
4. Atkinson MA, Eisenbarth GS: Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet $358: 221-229,2001$
5. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464:1293.
6. Karl E Minges, Robin Whittemore, Margaret Grey. Overweight and obesity in youth with type 1 diabetes. Annu Rev Nurs Res, 2013;31:47-69, doi: 10.1891/0739-6686 31.47.
7. P Raghupathy. Diabetic ketoacidosis in children and adolescents. Indian J Endocrinol Metab. 2015 Apr,19(Suppl 1):S55-7. doi 10.4103/22308210.155403.
8. Winter WE Molecular and biochemical analysis of the MODY syndromes. Pediatric Diabetes 2000; 1:88-117.
9. National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979; 28:1039-1057.
10. American Diabetes Association. Position statement diagnosis and classification of diabetes mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2005; 28:S37-S42.
11. Leslie RD, Kolb H, Schloot NC, Buzzetti R, Mauricio D, De Leiva A, et al. Diabetes classification: grey zones, sound and smoke: Action LADA 1. Diabetes Metab Res Rev 2008;24(7):511),
12. American Diabetes Association. Standards of Medical Care in Diabetes2014. Diabetes Carc, 37, S14-S80 https://doi.org/10.2337/dcl4-S014.
13. Gill GV, Mbantya JC, Ramaiya KL, Tesfaye S. A sub-Saharan African perspective of diabetes. Diabetologia 2009: 52:8-16.
14. Barman KK, Premalatha G, Mohan V. Tropical chronic pancreatitis, Postgrad Med J 2003: 79: 606-615.
15. International Diabetes F. IDF Diabetes Atlas. 7th edn. Brussels, Belgium: Intemational Diabetes F, 2015.
16. Diamond Project Group. Incidence and trends of childhood type 1 diabetes worldwide 1990-1999. Diabet Med 2006: 23: 857-866.
17. Diabetes Epidemiology Research International Group. Geographic pattems of childhood insulin-dependent diabetes mellitus. Diabetes 1988; 37:1113-9.
18. Green A, Gale EA, Patterson CC. Incidence of childhood-onset insulin-dependent diabetes mellitus: the EURODIAB ACE Study. Lancet 1992;339(8798):905-9
19. Davis TM, Stratton IM, Fox CJ, et al. UK. Prospective Diabetes Study 22. Effect of age at diagnosis on diabetic tissue damage during the first 6 years of NIDDM. Diabetes Care 1997; 20 (9): 1435-1441
20. World Health Organization. Prevention of diabetes mellitus. Report of a WHO Study Group. Geneva: World Health Organization; 1994. No. 844
21. International Diabetes F. IDF Diabetes Atlas. 4thedn. Brussels, Belgium: International Diabetes F, 2009.
22. International Diabetes F. IDF Diabetes Atlas. oth edn. Brussels, Belgium: Intemational Diabetes F, 2013.
23. International Diabetes F. IDF Diabetes Atlas. 7th edn. Brussels, Belgium: Intemational Diabetes F, 2015 ,
24. Intemational Diabetes F. IDF Diabetes Atlas. Bth edn. Brussels, Belgium: Intemational Diabetes F, 2017
25. Intemational Diabetes F. IDF Diabetes Atlas. 9th edn. Brussels, Belgium: Intemational Diabetes F, 2019
26. International Diabetes F. IDF Diabetes Atlas. 10th edn. Brussels, Belgium: International Diabetes F, 2021
27. Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care. 2000 Oct, 23(10): 1516-26.
28. Yin-ling Chen, ${ }^{1,3}$ Yong-cheng Huang, ${ }^{1}$ Yong-chao Qiao, ${ }^{2}$ Wei Ling, ${ }^{1}$ Yanhong Pan, ${ }^{1,3}$ Li-jun Geng, ${ }^{1,3}$ Jian-long Xiao, ${ }^{1,3}$ Xiao-xi Zhang,,1,3 and Hailu Zhacos ${ }^{1,2,3}$ Climates on incidence of childhood type 1 diabetes mellitus in 72 countries. Sci Rep. Oct 9 2017; 7:12810.
29. GaleEA. The rise of childhood type I Diabetes in the 20th century Diabetes 2002; 51 (12): 3353-61
30. SEARCH for Diabetes in Youth Study Group, Liese AD, DAgcstino RB Jr, et al. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 2006; 118:1510.
31. Ilonen J, Reijonen H, Green A et al. Geographical differences within finland in the frequency of HLADQ genotypes associated with type 1 diabetes susceptibility. Eur J Immunogenet 2000: 27: 225-230
32. Kukko M, Virtanen SM, Toivonen A et al. Geographical variation in risk HLA-DQB1 genotypes for type 1 diabetes and signs of beta-cell autoimmunity in a high-incidence country. Diabetes Care 2004: 27: 676-681).
33. Kondrashova A, Reunanen A, Romanov A, et al. A sixfold gradient in the incidence of type 1 diabetes at the eastem border of Finland Ann Med 2005; 37(1):67-72
34. Karvonen M, Tuomilehto J, Libman I, LaPorte R: A review of the recent epideniological data on the worldwide incidence of type 1 (insulin-dependent) diabetes mellitus; World Health Organization DiaMond Project Group. Diabetologia 36:883-892, 1993.
35. Dahlquist G, Mustonen L: Childhood onset diabetes; time trends and elimatological factors. Int J Epidemiol 23:1234-1241, 1994;
36. Padaiga Z, Tuomilehto J, Karvonen M, Podar T, Brigis G, Urbonaite B, Kohtamãki K, Lounamaa R, Tuomilehto-Wolf E, Reunanen A: Incidence trends in childhood onset IDDM in four countrics around the Baltic Sea during 1983-1992. Diabetologia 40:187-192, 1977)
37. Helgason T, Danielsen R, Thorsson AV: Incidence and prevalence of type 1 (insulin-dependent) diabetes mellitus in Icelandic children 1970-1989, Diabetologia 35:880-883, 1992)-
38. Mary A. M. Rogers, Catherine Kim, Tanima Banerjee \& Joyce M. Lee.Fluctuations in the incidence of type 1 diabetes in the United States from 2001 to 2015: a longitudinal study. BMC Medicine (2017) 15:199 DOI 10.1186/s12916-017-0958-6
39. Waldhör T, Schober E, Karmian-Teherani D, et al. Regional differences and temporal incidence trend of Type I diabetes mellitus in Austria from 1989 to 1999: a nationwide study. Diabetologia 2000; 43:1449,
40. Rosenbauer J, Herzig P, von Kries R, et al. Temporal, seasonal, and geographical incidence pattems of type I diabetes mellitus in children under 5 years of age in Germany. Diabetologia 1999; 42:1055
41. Yang Z, Wang K, Li T, et al. Childhood diabetes in China. Enormous variation by place and ethnic group. Diabetes Care 1998; 21:525.
42. Liese $A D$, Lawson A, Song HR, et al. Evaluating geographic variation in type 1 and type 2 diabetes mellitus incidence in youth in four US regions. Health Place 2010, 16.547,
43. Songini, M., Mannu, C., Targhetta, C. et al. Type 1 diabetes in Sardinia: facts and hypotheses in the context of worldwide epidemiological
data. Acta Diabetol 54, 9-17 (2017). hetps/idoiorg/10.1007/90592-016-0909-2
44. Virtanen SM, Saukkonen T, Savilahti E, et al. Diet, cow's milk protein antibodies and the risk of IDDM in Finnish children. Childhood Diabetes in Finland Study Group. Diabetologia 1994, 37:381.
45. Elliott RB, Martin JM Dietary protein: a trigger of insulin-dependent diabetes in the BB rat? Diabetologia. 1984 Apr, 26(4):297-9.
46. Dahlquist GG, Blom LG, Persson LA, Sandström AI, Wall SG. Dietary factors and the risk of developing insulin dependent diabetes in childhood.BMJ. 1990 May 19; 300(6735):1302-6.
47. Nerris JM, Beaty B, Klingenamith G, et al Lack of association between early exposure to cow's milk protein and beta-cell autcimmunity. Diabetes Autoinmunity Study in the Young (DAISY). JAMA 1996; 276.609.
48. Virtanen SM, Läärā E, Hyppŏnen E, Reijonen H, Räsānen L, Aro A, Knip M, Ilonen J, Akerblom HK. Cow's milk consumption, HLA-DQB1 genotype, and type 1 diabetes: a nested case-control study of siblings of children with diabetes. Childhood diabetes in Finland study group. Diabetes. 2000 Jun; 49(6):912-7
49. Tsabouri S, Douros K, Priftis KN. Cow's milk allergenicity. Endoor Metab Immune Disord Drug Targets. 2014 Mr,14:1626.
50. Elliott RB, Harris DP, Hill JP, et al. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia 1999; 42:292.
51. Bertrand-Harb C, Ivanova IV, Dalgalartondo M, Haertlle T. Evolution of β-lactoglobulin and α-lactalbumin content during yoghurt fermentation. International Dairy Journal. 2003:13:39-45,
52. Wang S, Zhu H, Lu C, Kang Z, Luo Y, Feng L, et al. Fermented milk supplemented with probiotics and prebiotics can effectively alter the intestinal microbiota and immunity of host animals. J Dairy Sci. 2012 Sep;95:4813. 2.
53. Accurso A, Bernstein RK, Dahlqvist A, Draznin B, Feinman RD, Fine EI, Gleed A, Jacobs DB, Larson G, Lustig RH, Manninen AH, McFarlane SI, Morrison K, Nielsen JV, Ravnskov U, Roth KS, Silvestre R, Sowers JR, Sundberg R, Volek JS, Westman EC, Wood RJ, Wortman J, Vemon MC. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal. Nutt Metab (Lond). 2008 Apr 8: 50:9.
54. Sheard NF. Clark NG, Brand-Miller JC, Franz MJ, Pi-Sunyer FX, MayerDavis E, Kulkarni K, Geil P. Dietary carbohydrate (amount and type) in the prevention and management of diabetes: a statement by the american
diabetes association. Diabetes Care. 2004 Sep; $27(9): 2266$-71 .
55. Norris JM, Barriga K, Klingensmith G, et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 2003; 290:1713.
56. Frederiksen B, Kroehl M, Lamb MM, et al. Infant exposures and development of type 1 diabetes mellitus; The Diabetes Autoimmunity Study in the Young (DAISY). JAMA Pediatr 2013; 167.808
57. Norris JM, Bamiga K, Hoffenberg EJ, et al. Risk of celiac disease autoimmunity and timing of gluten introduction in the diet of infants at increased risk of disease. JAMA 2005; 293:2343.
58. Krishna Mohan I, Das UN. Prevention of chemically induced diabetes mellitus in experimental arimals by polyunsaturated fatty acids. Nutrition 2001; 17:126.
59. Kleemann R, Scott FW, Wörz-Pagenstert U, et al. Impact of dietary fat on Th1/Th2 cytokine gene expression in the panereas and gut of diabetesprone BB rats. J Autoimmun 1998; 11:97.
60. Stene LC, Joner G, Norwegian Childhood Diabetes Study Group. Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes; a large, population-based, case-control study. Am I Clin Nutr 2003; 78:1128.
61. Norris JM, Yin X, Lamb MM, et al. Omega-3 polyunsaturated fatty acid intake and islet autormmunity in children at increased risk for type 1 diabetes. JAMA 2007, 298:1420.
62. Parslow RC, McKinney PA, Law GR, etal. Incidence of childhood diabetes mellitus in Yorkshire, northern England, is associated with nitrate in drinking water: an ecological analysis. Diabetologia 1997; 40:550.
63. Staples JA, Ponsonby AL, Lim LL, McMichael AJ. Ecologic analysis of some immune-related disorders, including type 1 diabetes in Australia-latitude, regional ultraviolet radiation, and disease prevalence. Environmental Health Perspectives. 2003; 111(4):518-523.
64. Pozzilli P, Manfrini $\$$, Crinó A, Picardi A, et al. Low levels of 25 -hydroxyvitamin D3 and 1, 25-dihydroxyvitamin D3 in patients with newly diagnosed type 1 diabetes. Horm Metab Res. 2005; 37: 680-683.
65. Zipitis CS, Akobeng AK. Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Arch. Dis.Child 2008;93: 512-517.
66. Koppen, Wadimir (1884). The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world)]. Meteorologische Zeitschrift (published 2011). 20(3): 35360. Bibcode:2011MetZe.20..351K. doi:10.1127/0941-2948/2011/105.
67. Foulis AK, McGill M, Farquharson MA, Hilton DA. A search for evidence of viral infection in pancreases of newly diagnosed patients with IDDM. Diabetologia 1997; 40:53.
68. Yoon JW, Austin M, Onodera T, Notkins AL. Isolation of a vinus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 1979: 300:1173.
69. Szopa TM, Titchener PA, Portwood ND, Taylor KW, Diabetes mellitus due to viruses--some recent developments. Diabetologia 1993; 36:687.
70. Schoenwolf GC. Larsen's Human Embryology. 4th ed. Philadelphia, PA: Elsevier Health Sciences, 2008.
71. Taurianine S, Oikarinen S, Oikaninen M, Hyöty. Enteroviruses in the pathogenesis of type 1 diabetes. Semin Immunopathol, 2011; 33(1): 45-55,
72. Mikulecky̌ M, Michalkova D, Petrovičovà A. Coxsackie infection and births of future diabetic childrent year, seasonality and secularity. Journal of Pediatric Endocrinology \& Metabolism. 2000; 13: 523-527.
73. Khetsuriani N, LaMonte-Fowlkes A, Oberste MS, Pallansch MA. Enterovirus Surveillance - United States,1970-2005.https//www.cdc, gov/mmowiopeyiew immmithml ss5508a1 htm. Accessed April 25, 2011
74. Wagenknecht LW, Roseman JM, Herman WH. Increased incidence of in-sulin-dependent diabetes mellitus following an epidemic of coxsackievirus B5. American Journal of Epidemiology. 1991; 133(10): 1024-1031.
75. Dotta F, Censini S, van Halteren AG, et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proo Natl Acad Sci U S A 2007; 104:5115.
76. King ML, Shaikh A, Bidwell D, et al. Coxsackie-B-virus-specific lgM responses in children with insulin-dependent (juvenile-onset; type I) diabetes mellitus. Lancet 1983; 1:1397.
77. Hybty H, Hiltunen M, Knip M, et al. A procpective study of the role of coxsackie B and other enterovirus infections in the pathogenesis of IDDM. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes 1995; 44:652.
78. Viskari HR, Roivainen M, Reunanen A, Pitkăniemi J, et al. Maternal firstrimester enterovirus infection and future risk of type 1 diabetes in the exposed fetus. Diabetes. 2002; 51: 2568-2571.
79. Dahlquist GG, Ivarsson S, Lindberg B, Forsgren M. Matemal enteroviral infection during pregnancy as a risk factor for childhood IDDM: a popula-tion-based case-control study. Diabetes. 1995; 44: 408-413.
80. Salminen K, Sadeharju K, Lönnrot M, Văhăsalo, et al Enterovinus infections are associated with the induction of β-cell autoimmunity in a prospective birth cohort study. Journal of Medical Virology. 2003; 69:91-98.
81. Sadeharju K, Hämålainen AM, Knip M, Lônot M, et al. Enterovirus infections as a risk factor for type I diabetes: virus analyses in a dietary intervention trial. Clin Exp Immunol. 2003; 132: 271-277.
82. Jefferies, C. et al. 15 -year incidence of diabetic ketoacidosis at onset of type 1 diabetes in children from a regional setting (Auckland, New Zealand). Sci. Rep. 5, 10358 (2015)
83. Kaufman DL, Erlander MG, Clare-Salzler M, et al. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest 1992; 89:283.
84. Atkinson MA, Bowman MA, Campbell L, et al. Cellular immunity to a determinant conmon to glutamate decarboxylase and coxsackie virus in in-sulin-dependent diabetes. J Clin Invest 1994;94:2125.
85. Menser MA, Forrest JM, Bransby RD. Rubella infection and diabetes mellitus. Lancet 1978; 1:57.
86. Hyōty H, Taylor KW. The role of viruses in human diabetes. Diabetologia 2002; 45:1353
87. Cainelli F, Manzaroli D, Renzini C, et al. Coxsackie B vins-induced autoimmunity to GAD does not lead to type 1 diabetes. Diabetes Care 2000; 23:1021.
8B. Dyrberg T, Schwimmbeck PL, Oldstone MB. Inhibition of diabetes in BB rats by virus infection. J Clin Invest 1988;81:928.
88. Like AA, Guberski DL, Butler L. Influence of environmental viral agents on frequency and tempo of diabetes mellitus in $\mathrm{BB} / \mathrm{Wor}$ rats. Diabetes 1991; 40:259.
89. Oldstone MB. Prevention of type I diabetes in nonobese diabetic mice by virus infection. Science 1988; 239:500.
90. Hviid A, Stellfeld M, Wohlfahrt J, Melbye M. Childhood vaccination and type 1 diabetes. N Engl J Med 2004; 350:1398.
91. Dahlquist GG, Patterson C, Soltesz G. Perinatal risk factors for childhood type 1 diabetes in Europe. The EURODIAB Substudy 2 Study Group, Diabetes Care 1999; 22:1698.
92. Dahlquist G, Bennich SS, Kallen B (1996) Intrauterine growth pattem and tisk of childhood onset insulin dependent (type 1) dabetes: population based case-control study. BMJ 313:1174-1177
93. Stene LC, Magnus P, Lie RT, et al. Birth weight and childhood onset type 1 diabetes: population based cohort study. BMJ 2001; 322:889.
94. Cardwell CR, Carson DJ, Patterson CC. Parental age at delivery, birth order, birth weight and gestational age are associated with the risk of childhood Type 1 diabetes: a UK regional retrospective cohort study. Diabet

Med 2005:22(2):200-6.
96. Sumnik Z, Drevinek P, Lanska V, Malcova H, Vavrinec J, Cinek O. Higher maternal age at delivery, and lower birth orders are associated with increased risk of childhood type 1 diabetes mellitus. Exp Clin Endocrinol Diabetes 2004,112(6):294-7.
97. Dahlquist GG, Pundzinte-Lyckả A, Nystrơm L, et al. Birthweight and risk of type 1 diabetes in children and young adults: a population-based register study. Diabetologia 2005, 48.1114.
98. Blom L, Dahlquist G, Nyström L, Sandström A. The Swedish Childhood Diabetes Study-social and perinatal determinants for diabetes in childhood. Diabetologia Wall S (1989) 32:7-13
99. Kibirige M, Metcalf B, Renuka R, Wilkin TJ. Testing the accelerator hypothesis: the relationship between body mass and age at diagnosis of type 1 diabetes. Diabetes Care 2003; 26:2865.
100. Wilkin TJ. The accelerator hypothesis: weight gain as the missing link between Type I and Type II diabetes. Diabetologia 2001; 44:914.
101. Blom L, Persson LA, Dahlquist G (1992) A highlinear growth is associated with an increased risk of childhood diabetes mellitus. Diabetologia 35:528533
102. Dahlquist G(1995) Environmental risk factors in human type 1 diabetesan epidemiological perspective. Diabetes Metab Rev 11:37-46
103. LaPorte R, Matsushima M, Chang Y-F. Prevalence and incidence of insu-lin-dependent diabetes. In: National Diabetes Data Group: Diabetes in America. 2nd ed. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 1995:37-46
104. Mimura G. Present status and future view of the genetics of diabetes in Japan. In: Mirmura G, Baba S, Goto W, Kobberling J, eds. Clinical Genetics of Diabetes Mellitus, International Congress Series 597. Amsterdam: Excerpta Medica, 1982:13-18.
105. Kitagawa T, Fugita H, Hibi I. A comparative study of the epidemiology of IDDM in between Japan, Norway, Israel, and the United States. Acta Paediatr Jpn 1984; 26:275-281.
106. Weets I, Kaufman L, Van der Auwera B, et al. Seasonality in clinical onset of type 1 diabetes in elgian patients above the age of 10 is restricted to HLA-DQ2/DQ8-negative males, which explains the male to female excess in incidence. Diabetologia 2004, 47(4):614-621.
107. Fleeger F, Rogers KD, Drash A, Rosenbloom AL. Age, sex, and season of onset of childhood diabetes in different geographic areas. Pediatrics 1979; 63:374-379.
108. Adams, F., The seasonal variation in the onset of acute diabetes. The age and sex factors in 1000 diabetic patients. Arch Intem Med, 1926. 37; p:861-864.
109. Krassas GE, Tziomalos K, Pontikides N, Lewy H, Laron Z. Seasonality of month of birth of patients with Graves' and Hashimoto's diseases differs from that in the general population. European Joumal of Endocrinology. 2007; 156: 631-636.
110. Nilsson L, Björkstẻn B, Hattevig G, Kjellman B, Sigrs N, Kjellman NM. Season of birth as a predictor of atopic manifestations. Arch. Dis. Child. 1997, 76: 341-344.
111. Aberg N. Bitth season variation in asthma and allergic rhinitis. Clinical and Experimental Allergy. 1989; 19; 643-648.
112. Willis JA, Scott RS, Darlow BA, Lewy H, Ashkenazi I, Laron Z. Seasonality of birth and onset of clinical discase in children and adolescents (0-19 years) with type 1 dabetes mellitus in Canterbury, New Zealand. J Pediatr Endocrinol Metab 2002;15(5):645-7,
113. Levy-Marchal C, Patterson C, Green A. Variation by age group and seasonality at diagnosis of childhood IDDM in Europe. The EURODIAB ACE Study Group. Diabetologia 1995,38(7):823-30.
114. Michalkova DM, Cernay J, Dankova A, Rusnak M, Fandakova K. Incidence and prevalence of childhood diabetes in Slovakia (1985-1992). Slovak Childhood Diabetes Epidemiology Study Group. Diabetes Care 1995;18(3):315-20.
115. Padaiga Z, Tuomilehto J, Karvonen M, Dahlquist G, Podar T, Adojaan B, et al. Seasonal variation in the incidence of Type 1 diabetes mellitus during 1983 to 1992 in the countries around the Baltic Sea. Diabet Med 1999;16(9):736-43.
116. Kahn HS, Morgan TM, Case LD, Dabelea D, et al. Association of type 1 diabetes with month of birth among U.S. Youth. Diabetes Care. 2009; 32(11): 2010-2015
117. Laron Z, Lewy H, Wilderman I et al. Seasonality of month of birth of children and adolescents with type 1 diabetes mellitus in homogenous and heterogeneous populations. Isr Med Assoc I 2005: 7: 381-384.
118. Grover V, Lipton RB, Sclove SL. Seasonality of month of birth among African American children with diabetes mellitus in the city of Chicago. I Pediatr Endocrinol Metab 2004;17(3):289-96.
119. Mikulecky M, Minärik P, Michalková D. Insulin gene profile cycles with season of birth of furure diabetic children and their relatives. Journal of Pediatric Endocrinology \& Metabolism. 2004; 17(5): 727-730.
120. Moony JA, Helms PJ, Jelliffe I. Smail P. Seasonality of type 1 D.M. in children and its modification by weekends and holidays: retrospective study. Arch Dis Child. 2004; 89 (10):970-3.
121. Rothwell PM, Gutnikov SA, McKinney PA, et al. Seasonality of birth in children with diabetes in Europe: multicentre cohort study. BMJ. 1999:319: 887-888.
122. Samuelsson U, Johansson C, Ludvigsson J. Month of birth and risk of developing insulin dependent diabetes in south east Sweden. Arch Dis Child 1999; 81:143-6.
123. Moltchanova EV, Schreier N, Lammi N, Karvonen M. Seasonal variation of diagnosis of Type 1 diabetes mellitus in children worldwide. Diabet Med 2009;26(7):673-8.
124. Songini M, Casu A, The Sardinian Collaborative Group for Epidemiology of IDDM, Ashkenazi I, Laron Z. Scasonality of birth in children (0-14 years) and young adults ($0-29$ years) with type 1 diabetes mellitus in Sardinia differs from that in the general population. Journal of Pediatric Endocrinology \& Metabolism; 2001: 14: 781-783
125. Kordonoun O, Shuga N, Lewy H, Ashkenazi I, Laron Z. Scasonality of month of birth of children and adolescents with type 1 diabetes mellitus in Berlin differs from the general population. Eur J Pediatr. 2001; 161: 291 292.
126. Neu A, Kehrer M, Ashkenazi I, Laron Z. Seasonality of birth in children (0-14 years) with diabetes mellitus type 1 in Baden-Wuertemberg, Germany. Journal of Pediatrio Endocrinology \& Metabolism. 2000; 13: 10811085.
127. McKinney PA. Seasonality of birth in patients with childhood Type I diabetes in 19 European regions. Diabetologia 2001;44 Suppl 3:B67-74.
128. Vaiserman AM, Carstense B, Voitenko VP, Tronko MD, et al. Seasonality of birth in children and young adults ($0-29$ years) with type 1 diabetes in Ukraine. Diabetologia. 2007; 50: 32-35.
129. Mikulecky M, Michalkevá D, Hlava P. Seascnality of births of Slovak IDDM children. Diabetologia; 1999; 42 (Suppl 1): A86/314.
130. Ursic-Bratina N, Battelino T, Kkżišnik C, Laron-Kenet T, Ashkenazi I, Laron Z. Seasonality of birth in children ($0-14$ years) with type 1 diabetes mellitus in Slovenia. Journal of Pediatric Endocrinology \& Metabolism.2001, 14(1): 47-52.
131. Kida K, Mimura G, lto T, et al. Incidence of type 1 diabetes mellitus in children aged 0-14 in Japan, 1986-1990, including an analysis for seasonality of onset and month of birth JDS study. Diabetic Medicine.2000; 17:

59-63.
132. Laron Z, Shanii I, Nitzan-Kaluski D, Ashkenazi I. Month of birth and subsequent development of type 1 diabetes (IDDM). Joumal of Pediatric Endocrinclogy \& Metabolism. 1999; 12(3): 397-402.
133. Jongbloet PH, Groenewoud HM, Hirasing RA. Van Buren S. Seasonality of birth in patients with childhood diabetes in the Netherlands. Diabetes Care 1998; 21(1): 190-191.
134. Roche EF, Lewry H, Hoey HM, Laron Z. Differences between males and females in the seasonality of birth and month of clinical onset of disease in children with type 1 diabetes mellitus in Ireland. Journal of Pediatric Endocrinology \& Metabolism. 2003; 16(5): 779-782.
135. Dabelea D, Mayer-Davis EI, Saydah S, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 2014; 311:1778
136. Haynes A, Bower C, Bulsara MK, Jones TW, Davis EA. Continued increase in the incidence of childhood Type 1 diabetes in a population-based Australian sample (1985-2002).Diabetologia. 2004 May, 47(5) :866-70.
137. Stipancic G, et al. Incidence and trends of childhood Type 1 diabetes in Croatia from 1995 to 2003. Diabetes Res. Clin. Pr 2008;80:122-7. doi: 10.1016/j.diabres. 2007.10.019.
138. Karvonen M, Pitkaniemi M, Pitkaniemi J2 Kohtamaki K, Tajima N, Tuomilehto J. Sex difference in the incidence of insulin-dependent diabetes mellitus: an analysis of the recent epidemiological data. World Health Organization DIAMOND Project Group. Diabetes Metab Rev 1997;13(4):275-91.
139. Gale EA, Gillespie KM. Diabetes and gender. Diabetologia 2001; 44:3.
140. Harjutsalo V, Sjöberg L, Tuomilehto J. Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet 2008; 371:1777.
141. Skordis N, Efstathiou E, Kyriakides TC et al. Epidemiology of type 1 diabetes mellitus in Cyprus: rising incidence at the dawn of the 21 st century, Hormones (Athens) 2012: 11:86-93.
142. Wandell PE, Carlsson AC . Time trends and gender differences in incidence and prevalence of type 1 diabetes in Sweden Curr Diabetes Rev 2013:9: 342-349.
143. Australian Bureau of Statistics. Australian Standard Classification of Cultural and Ethnic Groups (2000-2001) http//www.ausstats.abs.gov.au/ausstats/free nsfol
CAFD9A578C421AEFCA256C0F0001D603/\$File/12490_2000-01.pdf. Accessed April 25, 2011.
144. Pundziute-Lycka A, Dahlquist G, Nystrom L, Arnqvist H, Bjork E, Blohme G, et al. The incidence of Type I diabetes has not increased but shifted to a younger age at diagnosis in the 0-34 years group in Sweden 1983-1998. Diabetologia 2002;45(6):783-91.
145. Felner EI, Klitz W. Ham M, et al. Genetic interaction among three genomic regions creates distinct contributions to early-and late-onset type 1 diabetes mellitus. Pediatr Diabetes 2005; 6:213.
146. Durnuty P, Ruiz F, Garcia de los Rios M. Age at diagnosis and seasonal variation in the onset of insulin-dependent diabetes in Chile (Southern hemisphere). Diabetologia 1979; 17:357.
147. Writing Group for the SEARCH for Diabetes in Youth Study Group, Dabelea D, Bell RA, et al. Incidence of diabetes in youth in the Urited States. JAMA 2007; 2972716.
148. Kyvik KO, Nystrom L, Gorus F, Songini M, Oestman J, Castell C, et al. The epidemiology of Type 1 diabetes mellitus is not the same in young adults as in children. Diabetologia 2004;47(3):377-84,
149. Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Amr 2010;39(3):481-497.
150. Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study, Lancet 2009: 373: 2027-2033.
151. Gyums EK, Patterson C, Soltesz G. Twenty-one years of prospective incidence of childhood type 1 diabetes in Hungary - the rising trend continues (or peaks and highlands?). Pediatr Diabetes 2012: 13: 21-25.
152. Sipetic S, Maksimovio J, Vlajinac H et al. Rising incidence of type 1 diabetes in Belgrade children aged $0-14$ years in the period from 1982 to 2005. J Endocrinol Invest 2013: 36: 307-312.
153. Bell RA, Mayer-Davis EJ, Beyer JW, et al. Diahetes in non-Hispanic white youth: prevalence, incidence, and clinical characteristics; the SEARCH for Diabetes in Youth Study. Diabetes Care 2009; 32 Suppl 2:S102
154. MacDonald MJ: Lower frequency of diabetes among hospitalised Negro than white children: theoretical implications. Acta Genet Med Gemellol 24:119-125, 1975
155. MacDonald MJ: Hypothesis: the frequencies of juvenile diabetes in American blacks and Caucasians are consistent with dominant inheritance. Diabetes 29:110-114, 1980
156. Reitnauer PJ, Go RCP, Acton RT, Murphy CC, Budowle B, Barger BO, Roseman JM: Evidence for genetic admixture as a determinant in the
occurrence of insulin-dependent diabetes mellitus in U. S. blacks. Diabetes 31:532-537, 1982
157. Chakraborty R, Kamboh MI, Nwankwo M, Ferrell RE: Caucasian genes in American blacks: new data. Am J Hum Genet 50:145-155, 1992
158. Krishnamurthy B, Dudek NL, McKemzie MD, et al. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest 2006; 116:3258.
159. Pflueger M, Seppănen-Laakso T, Suortti T, Hyōtylăinen T, Achenbach P, Bonifacio E, Orešič M, Ziegler AG. Age- and islet autoimmunity-associated differences in amino acid and lipid metabolites in children at risk for type 1 diabetes. Diabetes. 2011 Nov ; $60(11): 2740-7$.
160. Brurzell JD, Robertson RP, Lemer RL, et al. Relationships between fasting plasma glucose and insulin secretion during intravenous glucose tolerance tests. J Clin Endocrind Metab 1976; 42:222
161. Barker JM, McFann K, Harrison LC, et al. Pre-type 1 diabetes dysmetabolism; maximal sensitivity achieved with both oral and intravenous glucose tolerance festing. J Pediatr 2007; 150:31.
162. Ward WK, LaCava EC, Paquette TL, et al. Disproportionate elevation of immunoreactive proinsulin in type 2 (non-insulin-dependent) diabetes mellitus and in experimental insulin resistance. Diabetologia 1987; 30:698.
163. Shamis I, Gordon O, Albag Y, Goldsand G, Laron Z Ethnic differences in the incidence of childhood IDDM in Israel (1965-1993). Diabetes Care 20:504-508, 1997.
164. Newhook LA, Curtis J, Hagerty D, et al. High incidence of childhood type 1 diabetes in the Avalon Peninsula, Newfoundland, Canada. Diabetes Care 2004, 27:885).
165. Ehehalt S, Popovic P, Muntoni S, Willasch A, Hub R, Ranke MB, et al. Incidence of diabetes mellitus among children of Italian migrants substantiates the role of genetic factors in the pathogenesis of type 1 diabetes. Eur J Pediatr 2009;168(5):613-7.
166. Ikegami H, Ogihara T. Genetics of insulin-dependent diabetes mellitus. Endocr J 1996;43(6):605-13.
167. Libby P, Nathan DM,Abraham K, et al. Report of The National Heat, Lung, and Blood Institute-Naticnal Institute of Diabetes and Digestive and Kidncy diseases working group on cardiovascular cocuplications of type 1 diabetes mellitus. Crculation 2005:111:348993. doi:10.1161/CIRCULATIONAHA. 104.529651
168. Edge JA, Ford-Adams ME, Dunger DB. Causes of death in children with insulin dependent diabetes 1990-96. Arch Dis Child 1999, 81:318.
169. Wellen KE, Hotamisligil GS.Inflammation, stress, and diabetes.J Clin

Invest. 2005 May; 115 (5):1111-9,
170. Centers for Disease Control and Prevention (CDC). Racial disparities in diabetes mortality among persons aged 1-19 years--United States, 19792004. MMWR Morb Mortal Wkly Rep 2007; 56:1184.
171. Lipton R. Good G, Mikhailov T, et al. Ethnic differences in mortality from insulin-dependent diabetes mellitus among people less than 25 years of age. Pediatrics 1999; 103:952.
172. Levitsky L. Death from diabetes (DM) in hospitalized children (19701988). Pediatr Res 1991; 29:A195
173. Mallare JT, Cordice CC, Ryan BA, et al. Identifying risk factors for the development of diabetic ketoacidosis in new onset type 1 diabetes mellitus. Clin Pediatr (Phila) 2003; 42:591.
174. J. Scibilia, D. Finegold, and J. Domman, "Why do children with diabetics dic?" Acta Endocrinologica, vol. 113, no. 279, pp. 326-333, 1986.
175. Cryer PE. Hypoglycemia in type 1 diabetes mellitus. Endocrinol Metab Clin North Am. 2010;39(3):641-654
176. Wellen KE, Hotamisligil GSInflammation, stress, and diabetes. I Clin Invest. 2005 May, 115(5):1111-9.
177. Alemzadeh R, Wyatt DT, Diabetes mellitus in children, In: Behmann RE , Kliegman RM, Jenson HB, editors. Nelson textbook of pediatries, 17 th ed. WP Saunders Company in USA. 2004; Chapter 583: p. 1947-1967.
178. Vehik K, Hamman RF, Lezotte D, et al. Increasing incidence of type 1 diabetes in 0 - to 17 -year-old Colorado youth. Diabetes Care 2007; 30:503.
179. Harjutsalo V, Sund R, Krip M, Groop PH. Incidence of type 1 diabetes in Finland. JAMA 2013; 310:427.
180. Mamoulakis D, Galanakis E, Bicouvarakis S, et al. Epidemiology of childhood type I diabetes in Crete, 1990-2001. Acta Paediatr 2003; 92:737.
181. Karvonen M, Pitkāniemi J, Twomilehto J. The onset age of type 1 diabetes in Finnish children has become younger. The Finnish Childhood Diabetes Registry Group. Diabetes Care 1999; 22:1066.
182. Tuomilehto J. The emerging global epidemic of type 1 diabetes. Curr Diab Rep 2013; 13:795.
183. Skrivarhaug T, Stene LC, Drivvoll AK, Strom H, Joner G, Norwegian Childhood Diabetes Study Group. Incidence of type 1 diabetes in Norway among children aged 0-14 years between 1989 and 2012: has the incidence stopped rising? Results from the Norwegian Childhood Diabetes Registry. Diabetologia 2014: 57: 57-62.
184. Zhao Z, Sun C, Wang C et al. Rapidly rising incidence of childhood type 1 diabetes in Chinese population: epidemiology in Shanghai during 1997-
2011. Acta Diabetol 2014: Apr 29. [Epub ahead of print] (PMID: 24777734),
185. Lin WH, Wang MC, Wang WM et al. Incidence of and mortality from type I diabetes in Taiwan from 1999 through 2010: a nationwide cohort study. PLoS One 2014: 9: e86172.
186. Imkampe AK , Gulliford MC. Trends in type 1 diabetes incidence in the UK in 0-to 14 -year-olds and in 15- to 34 -year-olds, 1991-2008. Diabet Med 2011: 28.811-814.
187. Jarosz-Chobot P, Polanska J, Szadkowska A et al. Rapid increase in the incidence of type 1 diabetes in Polish children from 1989 to 2004, and predictions for 2010 to 2025. Diabetologia 2011: 54: 508-515.
188. Schober E, Waldhoer T, Rami B, Hofer S. Incidence and time trend of type 1 and type 2 diabetes in Austrian children 1999-2007. J Pediatr 2009: 155 : $190-3 \mathrm{cl}$.
189. Haynes A, Bulsara MK, Bower C, Jones TW, Davis EA. Cyclical variation in the incidence of childhood type 1 diabetes in Westem Australia (19852010). Diabetes Care 2012: 35: 2300-2302.
190. Derraik JG, Reed PW, Jefferies C, Cutfield SW, Hofman PL, Cutfield WS, Increasing incidence and age at diagnosis among children with type 1 diabetes mellitus over a 20 -year periodin Auckland (New Zealand). PLoS One 2012: 7: e32640.
191. Bruno G , Maule M, Biggeni A et al. More than 20 years of registration of type 1 diabetes in Sardinian children: temporal variations of incidence with age, period of diagnosis, and year of birth. Diabetes 2013: 62: 3542-3546.
192. Lipman TH, Levitt Katz LE, Ratcliffe SJ et al. Increasing incidence of type 1 diabetes in youth twenty years of the Philadelphia Pediatric Diabetes Registry. Diabetes Care 2013: 30: 1597-1603.
193. Tran F, Stone M, Huang CY et al. Population based incidence of diabetes in Australian youth aged 10-18 yr: increase in type 1 diabetes but not type 2 diabetes. Pediatr Diabetes 2014: Mar 17. doi: 10.1111/pedi. 12131.
194. Lawrence JM, Imperatore G, Dabelea D et al. Trends in incidence of type 1 diabetes among non-Hispanic White youth in the United States, 2002 2009. Diabetes 2014; Jun 4. pii: DB_131891. [Epub ahead of print].
195. Christopher C. Patterson, Valma Harjutsalo, Anders Green .Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989-2013: a multicentre prospective registration study, Diabetologia. 2019 Mar; 62(3):408-417. doi: $10.1007 / \mathrm{s} 00125-018-4763-3$.
196. Hermann R, Knip M, Veijola R et al. Temporal changes in the frequencies
of HLA genotypes in patients with type 1 diabetes - indication of an increased environmental pressure? Diabetologia 2003: 46: 420-425.
197. Fourlanos S, Varney MD. Tait BD et al. The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 2008: 31: 1546-1549.
198. Haynes A, Bulsara MK, Bower C, Jones TW, Davis EA. Cyclical variation in the incidence of childhood type 1 diabetes in Westem Australia (19852010). Diabetes Care 2012: 35: 2300-2302.
199. McNally RJ, Court S, James PW et al (2010) Cyclical variation in type 1 childhood diabetes. Epidemiology 21(6).914-915. https.//doi.org/10.1097 /EDE.Ob013e3181f38f3f
200. Atkinson MA, Eisenbarth GS, Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001;358(9277):221-9
201. McCulloch DK, Palmer JP. The appropriate use of B-cell function testing in the preclinical period of type 1 diabetes. Diabet Med 1991; 8:800
202. Bonifacio E, Ziegler AG. Advances in the prediction and natural history of type 1 diabetes. Endocrinol Metab Clin North Am. 2010 Sep; 39(3):513-25.
203. Greenbaum CJ, Scars KL, Kahn SE, Palmer JP. Relationship of beta-cell function and autoantibodies to progression and nomprogression of subclinical type 1 dabetes: follow-up of the Seattle Family Study. Diabetes 1999; 48:170.
204. McCulloch DK, Klaff LJ, Kahn SE, et al. Nonprogression of subclinical beta-cell dysfunction among first-degree relatives of IDDM patients. 5 -yr follow-up of the Seattle Family Study. Diabetes 1990; 39:549.
205. Bärmeier H, McCulloch DK, Neifing J., et al. Risk for developing type 1 (insulin-dependent) diabetes mellitus and the presence of islet 64 K antibodies. Diabetologia 1991; 34:727.
206. Tam AC, Thomas JM, Dean BM, et al. Predicting insulin-dependent diabetes. Lancet 1988; 1:845.
207. Keenan HA, Sun JK, Levine J, Doria A, Aiello LP, Eisenbarth G, BonnerWeir S, King GL.Residual insulin production and pancreatic B-cell turnover after 50 years of diabetes: Joslin Medalist Study.Diabetes, 2010 Nov; 59(11):2846-53.
208. Gregg BE, Moore PC, Demozay D, Hall BA, Li M, Husain A, Wright AJ, Atkinson MA, Rhodes CJ. Formation of a human β-cell population within pancreatic islets is set early in life. I Clin Endocrinol Metab. 2012 Sep; 97(9):3197-206.
209. Foulis AK, Liddle CN, Farquharson MA, Richmond JA, Weir RS. The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus:
a 25 -year review of deaths in patients under 20 years of age in the United Kingdon Diabetologia. 1986 May, 29(5):267-74.
210. Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 1965;14(10)-619-33.
211. Lowe CE, Cooper JD, Brusko T, et al, Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet 2007; 39:1074.
212. Foulis AK, Stewart JA. The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia. 1984 Jun; 26(6):45661.
213. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol, 2009 Feb; 155(2):173-81.
214. Michels AW, Eisenbarth GS. Immune interventionin type 1 diabetes.Semin Immunol. 2011 Jun; 23(3):214-9.
215. Peakman M, Leslie RD, Alviggi L, et al. Persistent activation of CD8 + Tcells characterizes prediabetic twins. Diabetes Care 1996; 19:1177.
216. In't Veld P. Insulitis in human type I diabetes: The quest for an elusive lesion Islets. 2011 Jul-Aug, 3(4):131-8.
217. Butler PC, Meier JJ, Butler AE, Bhushan A. The replication of beta cells in normal physiology, in disease and for therapy. Nat Clin Pract Endocrinol Metab, 2007 Nov, 3(11):758-68
218. Bingley PJ. Clinical applications of diabetes antibody testing. J Clin Endocrinol Metab. 2010;95:25-33.
219. Roep BO, Peakman M. Diabetogenic T lymphocytes in human type I diabetes, Curr Opin Immunol. 2011;23:746-53.
220. Atkinson MA, Bluestone JA, Eisenbarth GS, et al. How does type 1 diabetes develop?: the notion of homicide or beta-cell suicide revisited. Diabetee 2011;60:1370-79,
221. Lehuen A, Diana J, Zaccone P, Cooke A. Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol. $2010 \mathrm{Jul} ; 10(7)$:501-13.
222. Campbell-Thompson M, Wasserfall C, Montgomery EL, Atkinson MA, Kaddis JS, Pancreas organ weight in individuals with disease-associated autoantibodies at risk for type 1 diabetes. JAMA. 2012 Dec 12; 308(22):2337-9.
223. Gaglia J, Guimaraes AR, Harisinghani M, Turvey SE, Jackson R, Benoist C, Mathis D, Weissleder R Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest. 2011 Jar, 121(I):442-5.
224. Rothe H, Jenkins NA. Copeland NG, Kolb H. Active stage of autoimmune diabetes is associated with the expression of a novel cytokine, IGIF, which is located near Idd2. J Clin Invest 1997; 99:469.
225. Almawi WY, Tamim H, Azar ST. Clinical review 103: T helper type 1 and 2 cytokines mediate the onset and progression of type I (insulin-dependent) diabetes. J Clin Endocrinol Metab 1999; 84:1497.
226. Bluestone JA, Tang Q. Therapeutic vaccination using CD4+CD25+ anti-gen-specific regulatory T cells. Proc Natl Acad Sci US A 2004; 101 Suppl 2:14622.
227. Wildin RS, Freitas A. IPEX and FOXP3: clinical and research perspectives. J Autoimmun 2005; 25 Suppl:56.
228. Flanagan SE, Haapaniemi E, Russell MA, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autcimmune disease. Nat Genct 2014; 46:812.
229. Martin S, Wolf-Eichbaum D, Duinkerken G, et al. Development of type 1 diabetes despite severe hereditary B-lymphocyte deficiency. N Engl J Med 2001; 345:1036.
230. Yang M , Charlton B , Gautam AM Development of insulitis and diabetes in B cell-deficient NOD mice. J Autoimmun 1997, 10:257.
231. Di Lorenzo TP, Peakman M, Roep BO. Translational mini-review series on type 1 diabetes: Systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 2007, 148:1.
232. Peakman M, Stevens EJ, Lohmann T, et al. Naturally processed and presented epitopes of the islet cell autoantigen IA-2 eluted from HLA-DR4. J Clin Invest 1999; 104:1449.
233. Allen JS, Pang K, Skowera A, et al. Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T-cells through immune complex capture. Diabetes 2009; $58: 138$.
234. Ko IY, Jun HS, Kim GS, Yoon JW. Studies on autoimmunity for initiation of beta-cell destruction. X. Delayed expression of a membrane-bound islet cell-specific 38 kDa autoantigen that precedes insulitis and diabetes in the diabetes-prone BB rat. Diabetologia 1994; 37:460.
235. Jolicoeur C, Hanahan D, Smith KM. T-cell tolerance toward a transgenic beta-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc Natl Acad Sci U S A 1994; 91:6707.
236. Pugliese A, Zeller M, Fernandez A Jr, et al. The insulingene is transcribed in the luman thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat

Genet 1997; 15:293.
237. Gardner JM, Devoss JJ, Friedman RS, et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 2008; 321:843.
238. Nitta T, Murata S, Ueno T, et al. Thymic microenvironments for T-cell repertoire formation. Adv Immunol 2008; 99:59,
239. Hanahan D. Peripheral-antigen-expressing cells in thymic medulla: factors in self-tolerance and autoimmunity. Curr Opin Immund 1998; 10:656.
240. DeVoss JJ, Anderson MS. Lessons on immune tolerance from the monogenic disease APS1. Curr Opin Genet Dev 2007; 17:193.
241. Nakayama M, Abiru N, Moriyama H, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 2005; 435:220.
242. Palumbo MO, Levi D, Chentoufi AA, Polychronakos C. Isolation and characterization of proinsulin-producing medullary thymic epithelial cell clones. Diabetes 2006; 55:2595.
243. Fan Y, Rudert WA, Grupillo M, et al. Thymus-specific deletion of insulin induces autcimume diabetes. EMBO J 2009; 28:2812.
244. Sabater L, Ferrer-Francesch X, Sospedra M, et al. Insulin alleles and autoimmune regulator (AIRE) gene expression both influence insulin expression in the thymus. J Autoimmun 2005; 25:312.
245. Pietropaolo M, Castafio L, Babu S, et al. Islet cell autoantigen 69 kD (ICA69). Molecular cloning and charactenzation of a novel diabetes-associated autoantigen. J Clin Invest 1993, 92:359.
246. Karges W, Pietropaolo M, Ackerley CA, Dosch HM. Gene expression of islet cell antigen p69 in human, mouse, and rat. Diabetes 1996; 45:513.
247. Song A, Winer S, Tsui H, et al. Deviation of islet autoreactivity to cryptic epitopes protects NOD mice from diabetes. Eur J Immunol 2003; 33:546,
248. Mathews CE, Pietropaolo SL, Pietrapaolo M. Reduced thymic expression of islet antigen contributes to loss of self-tolerance. Ann N Y Acad Sci 2003; 1005:412.
249. Vafiadis P, Bennett ST, Todd JA, et al, Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997; 15:289.
250. Dogra RS, Vaidyanathan P. Prabakar KR, et al. Altemative splicing of G6PC2, the gene coding for the islet-specific glucose-6-phesphatase catalytic subunit-related protein (IGRP), results in differential expression in human thymus and spleen compared with panoreas. Diabetologia 2006; 49:953.
251. Bonner SM, Pietropado SL, Fan Y, et al Sequence variation in promoter of Ical gene, which encodes protein implicated in type 1 diabetes, causes transeription factor autoimmune regulator (AIRE) to increase its binding
and down-regulate expression. J Biol Chem 2012;287:17882.
252. Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med. 2009;360:1646-1654.
253. Olmos P, A^{\prime} Hern R, Heaton DA, et al. The significance of the concordance rate for type 1 (insulin-dependent) diabetes in identical twins. Diabetologia 1988, 31.747.
254. Tillil H, Köbberling J. Age-corrected empirical genetic risk estimates for first-degree relatives of IDDM patients. Diabetes 1987,36.93.
255. Kyvik KO, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ 1995;311(7010):913-7.
256. Field LL. Genetic linkage and association studies of Type I diabetes; challenges and rewards. Diabetologia 2002;45(1):21-35.
257. Aly TA, Baschal EE, Jahromi MM, Femando MS, Babu SR, Fingerlin TE, Kretowski A, Erlich HA, Fain PR, Rewers MJ, Eisenbarth GS. Analysis of single mucleotide polymorphisms identifies major type 1A diabetes locus telomeric of the major histocompatibility complex. Diabetes. 2008;57:770776
258. Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 1996,59:1134-1148.
259. Lambert AP, Gillespie KM, Thomson G, Cordell HJ, Todd JA, Gale EA, Bingley PJ. Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: a population-based study in the United Kingdom. J Clin Endocrinol Metab. 2004;89:4037-4043.
260. Noble JA, Valdes AM, Vamey MD, Carlson JA, Moonsamy P, Fear AL, Lane JA, Lavant E, Rappner R, Lcuey A, Concamnon P, Mychaleckyj JC, Erlich HA, HLA class I and genetic susceptibility to type 1 diabetes: results from the Type 1 Diabetes Genetics Consortium.Type 1 Diabetes Genetics Consortium. Diabetes. 2010 Nov; 59(11):2972-9.
261. Galbraith W, Wagner MC, Chao J, Abaza M, Emist LA, Nederlof MA, et al. (1991). "Imaging cytometry by multiparameter fluorescence", Cytometry. 12 (7); 579-96. ddi:10.1002/cyto.990120702. PMID 1782829.
262. Gorus FK. Diabetes registries and early biological markers of insulin-dependent diabetes mellitus. Belgian Diabetes Registry. Diabetes Metab Rev 997;13(4):247-249.
263. Morran MP, Vonberg A, Khadra A, Ptetropaclo M. Immunogenetics of type 1 diabetes mellitus. Mol Aspects Med 2015; 42:42.
264. Stryth DJ, Cooper JD, Bailey R, et al A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferoninduced helicase (IFIH1) region. Nat Genet 2006; 38:617.
265. Thomson G, et al. Relative predispositional effects of HLA class II DRBIDQBI haplotypes genotypes on type 1 diabetes: a meta-analysis. Tissue antigens. 2007,70:110-127.
266. Choo SY (2008). "The HLA system: genetics, immunology, clinical testing, and clinical implications". Yonsei Medical Joumal. 48 (1): 11-23. doi:10.3349/ymj.2007.48.1.11. PMC 2628004. PMID 17326240.
267. Khalil I, d'Auriol L, Gobet M, et al. A combination of HLA-DQ beta Asp57-negative and HLA DQ alpha Arg52 confers susceptibility to insulindependent diabetes mellitus. J Clin Invest 1990; 85:1315,
268. Rowe RE, Leech NJ, Nepom GT, McCulloch DK. High genetic risk for IDDM in the Pacific Northwest. First report from the Washington State Diabetes Prectiction Study. Diabetes 1994; 43:87.
269. Hummel M, Bonifacio E, Schmid S, walter M, Knopff A, Ziegler AG. Brief communication early appearance of islet autoantibodes predicts childhood type 1 diabetes in offspring of diabetic parents. Ann Intern Med 2004; 140(11):882-6.
270. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, Mychaleckyj JC, Todd JA, Bonella P, Fear AL, Lavant E, Louey A, Moonsamy P. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk analysis of the type 1 diabetes genetics consortium families. Type 1 Diabetes Genetios Consortium. Diabetes. 2008 Apr, 57(4):1084-92.
271. Pawelec G, Buhring HJ. Expression of MHC class II epitopes on human T lymphocyte clones. Cell Immunol. 1990;127:520-526.
272. Cruz TD, Valdes AM, Santiago A, Frazer de Llado T, Raffel LJ, Zeidler A, Rotter II, Erlich HA, Rewers M, Bugawan T, Noble JA. DPB1 alleles are associated with type 1 diabetes susceptibility in multiple ethnic groups. Diabetes, 2004;53-2158-2163.
273. Al-Hussein KA, Rama NR, Ahmad M, Rozemuller E, Tilanus MG. HLADPB1*0401 is associated with dominant protection against type 1 diabetes in the general Saudi population and in subjects with a high-risk DRDQ haplotype. Eur J Immunogenet, 2003;30:115-119,
274. Cucca F, Dudbridge F, Loddo M, Mulargia AP, Lampis R, Angius E, De Virgiliis S, Koeleman BP, Bain SC, Barnett AH, Gilchrist F, Cordell H, Welsh K, Todd JA. The HLA-DPB1--associated component of the IDDM1 and its relationship to the major loci HLA-DQB1,-DQA1, and -DRB1. Diabetes. 2001;50:1200-1205.
275. Noble JA. Valdes AM, Thomson G. Erlich HA. The HLA class II locus DPB1 can influence susceptibility to type 1 diabetes. Diabetes. 2000; 49:121-125
276. Nishimaki K, Kawamura T, Inada H, Yagawa K, Nose Y, Nabeya N, Isshiki G, Tatsumi N, Niihira S. HLA DPBI*0201 gene confers disease susceptibility in Japanese with childhood onset Type I diabetes, independent of HLA-DR and DQ genotypes. Elsevier-Diabetes Research and Clinical Practice. 2000;47:49-55.
277. Erlich HA, Rotter JI, Chang JD, Shaw SD, Raffel LJ, Klitz W, Bugawan TL, Zeidler A. Association of HLA-DPB1*0301 with insulin dependent diabetes mellitus in Mexican-Americans. Diabetes. 1996;45:610-614.
278. Balducci-Silano PL, Laynisse ZE. HLA-DP and susceptibility to insulindependent diabetes mellitus in an ethnically mixed population. Associations with other HLA-alleles. J Autoimmur. 1995;8:425-437.
279. Baisch JM, Capra JD. Analysis o HLA genotypes susceptibility to insulindependent diabetes mellitus: association maps telomeric to HLADP. Scand J Immunol. 1992;36:331-340.
280. Johansson S, Lie BA, Pociot F, Nerup J, Cambon-Thomsen A, Kockum I, Thorsby E, Undlien DE. HLA associations in type 1 diabetes: DPB1 alleles may act as markers of other HLA-complex susceptibility genes. Tissue Antigens. 2003,61:344-351.
281. Lie BA, Akselsen HE, Joner G, Dahl-Jorgensen K, Ronningen KS, Thorsby E, Undlien DE. HLA associations in insulin-dependent diabetes mellitus: no independent association to particular DP genes. Hum Immunol. 1997:55:170-175.
282. Mbanya JC, Sobngwi E, Mbanya DN. HLA-DRBI, -DQA1, -DQB1 and DPB1 susceptibility alleles in Cameroonian type 1 diabetes patients and controls. Eur J Immunogenet. 2001;28:459-462.
283. Zintzaras E, Germenis AE. Performance of antibodies against tissue transglutaminase for the diagnosis of celiac disease: meta-analysis, Clin Varcine Immunol. 2006;13:187-192.
284. Dorman JS, LaPorte RE, Stone RA, Trucco M, Worldwide differences in the incidence of type I diabetes are associated with amino acid variation at position 57 of the HLA-DQ beta chain. Proc Natl Acad Sci USA 1990; 87:7370.
285. Davies JL, Kawaguchi Y, Bennett ST, et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 1994; 371:130.
286. Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011 Oct 18; 12(11);781-92.
287. Cooper JD. Howson JM. Smyth D. Walker NM, Stevens H. Yang JH. She JX. Eisenbarth GS, Rewers M. Todd JA, Akolkar B, Concannon P. Erlich HA, Julier C, Morahan G, Nerup J, Nierras C, Pociot F, Rich SS. Confirmation of novel type 1 diafetes fisk loci in families, Diabetologia. 2012:55(4):996-1000,
288. Todd JA, et al Robust associations of four new chromosome regions from gencme-wide analyses of type 1 diabetes. Nat Genet. 2007;39(7):857-864.n
289. Cooper JD, Smyth DJ, Smiles AM, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet 2008; 40:1399.
290. Ziegler AG, Nepom GT. Prediction and pathogenesis in type 1 diabetes. Immunity. 2010 Apr 23; 32(4):468-78.
291. Rosenbloom AL. Obesity, insulin resistance, beta cell autoimmunity, and the changing clinical epidemiology of childhood diabetes. Diabetes Care 2003; 26-2954-2956.
292. Atkinson MA, Eisenbarth GS, Michels AW, Type 1 diabetes, Lancet (London, England). 2014;383(9911):69-82.
293. Lan MS, Wasserfall C, Maclaren NK, Notkins AL. LA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 1996;93(13):6367-70.
294. Wenzlau IM, Juhl K, Yu L, Moua D, Sarkar SA, Gottlieb P, et al. The cation efflux transporter $\mathrm{ZnT8}$ (Sle 30 A 8) is a major autcantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 2007;104(43):17040-5.
295. Winer S, Tsui H, Lau A, et al. Autoimmene islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat Med 2003; 9:198.
296. Ziegler AG, Hillebrand B, Rabl W, et al On the appearance of islet associated autoimmunity in offspring of diabetic mothers: a prospective study from birth. Diabetologia 1993; 36:402.
297. Achenbach P, Koczwara K, Knopff A, et al. Mature high-affinity immune responses to (pro)insulin anticipate the autommune cascade that leads to type 1 diabetes. J Clin Invest 2004; 114:589.
298. Alleva DG, Crowe PD, Jin L, et al. A disease-associated cellular immune response in type 1 diabetics to an immunodominant epitope of insulin. J Clin Invest 2001; 107:173,
299. Wong FS, Karttunen J, Dumont C, et al. Identification of an MHC class Irestricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat Med 1999; 5:1026.
300. Moriyama H , Abiru N, Paronen J, et al. Evidence for a primary islet autoantigen(preproinsulin 1) for insulitis and điabetes in the nonobese diabetic
mouse. Proc Natl Acad Sci U S A 2003:100:10376.
301. Parikka V, Näntō-Salonen K, Saarinen M, Simell T, Ilonen J, Hyōty H, Vejiola R, Knip M. Simell O. Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia. 2012 Jul ; 55(7): 1926-36.
302. Kent SC, Chen Y, Bregoli L, Clemmings SM, Kenyon NS, Ricordi C, Hering BJ, Hafler DA. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature. 2005 May 12; 435(7039):224-8.
303. Baekkeskov S, Aanstcot HJ, Christgau S, Reetz A, Solimena M, Cascalho M , et al. Identification of the 64 K autoantigenin insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990;347(6289):151-6.
304. Jacekel E, Klein L, Martin-Orozco N, von Bochmer H. Normal incidence of diabetes in NOD mice tolerant to glutamic acid decarboxylase. J Exp Med 2003; 197:1635.
305. Pietropaolo M, Hutton JC, Eisenbarth GS. Protein tyrosine phosphataselike proteins: link with IDDM. Diabetes Care 1997; 20:208,
306. Hawa M, Rowe R, Lan MS, et al. Value of antibodies to islet protein tyrosine phosphatase-like molecule in predicting type 1 diabetes. Diabetes 1997; 46:1270,
307. Verge CF, Gianani R, Kawasaki E, et al. Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD , and ICA512bde/IA-2 autoantibodies. Diabetes 1996; $45: 926$.
308. Wenzlau JM, Walter M, Gardner TJ, et al. Kinetics of the post-onset decline in zine transporter 8 autoantibodies in type 1 diabetic human subjects. J Clin Endocrinol Metab 2010; 95:4712.
309. Davidson HW, Wenzlau JM, O'Brien RM. Zinc transporter 8 (ZnT8) and β cell function. Trends Endocrinol Metab 2014; 25:415.
310. Oresic M , etal. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med. 2008 Dee 22; 205(13):2975-84.
311. Pietropaolo M, Towns R, Eisenbarth GS. Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes. Cold Spring Harb Perspect Med 2012; 2.
312. Soleimanpour SA, Stoffers DA. The pancreatic beta cell and type 1 diabetes: imocent bystander of active participant? Trends EndocrinolMetab. 2013;24(7):324-331.
313. Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in
diabetes mellitus with autoimmune polyendocrine deficiencies, Lancet 1974;2(7892):1279-83.
314. Lindberg B, Ivarsson SA, Landin-Olsson M, et al. Islet autoantibodies in cord blood from children who developed type I (insulin-dependent) diabetes mellitus before 15 years of age. Diabetologia 1999; 42:181.
315. Mahon JL, Sosenko JM, Rafkin-Mervis L, et al. The TrialNet Natural History Study of the Development of Type 1 Diabetes: objectives, design, and initial results. Pediatr Diabetes 2009, 10.97.
316. Gillespie KM, Gale EA, Bingley PJ. High familial risk and genetic susceptibility in early onset childhood diabetes. Diabetes 2002: 51:210-214.
317. Dorman JS, Steenkiste AR, O'Leary LA, McCarthy BJ, Lorenzen T, Foley TP. Type 1 diabetes in offspring of parents with type 1 diabetes: the tip of an autoimmune iceberg? Pediatr Diabetes 2000: 1:17-22.
318. El Hashimy M, Angelico MC, Martin BC, Krolewski AS, Warram JH. Factors modifying the risk of IDDM in offspring of an IDDM parent. Diabetes 1995: 44: 295-299.
319. Lorenzen T, Pociot F, Stilgren L et al. Predictors of IDDM recurrence risk in offspring of Danish IDDM patients. Danish IDDM Epidemiology and Genetics Group. Diabetologia 1998: 41: 666-673.
320. Warram JH, Krolewski AS, Gottlieb MS, Kahn CR. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers, N Engl JMed. 311:149 (1984).
321. Guo SW, Tuomilehto J. Preferential transmission of type I diabetes from parents to offspring: fact or artifact? Genet Epidemicl 2002; 23:323.
322. Tuomilehto J, Podar T, Tuomilehto-Wolf E, Virtala E. Evidence for importance of gender and birth cohort for risk of IDDM in offspring of IDDM parents. Diabetologia 1995; 38:975.
323. Redondo MJ, Jeffrey J, Fain PR, et al. Concordance for islet autoimmunity among monozygotic twins. N Engl J Med 2008; 359:2849.
324. Hemminki K, Li X, Sundquist J, Sundquist K. Familial association between type 1 diabetes and other autoimmune and related diseases. Diabetologia 2009: 52: 1820-1828.
325. Parkkola A, Harkonen T, Ryhanen SJ, Honen J, Knip M. Extended family history of type 1 diabetes and phenotype and genotype of newly diagnosed children. Diabetes Care 2012; 36; 348-354.
326. Gillespie KM, Aitken RJ, Wilson I, Williams AJ, Bingley PJ. Early onset of diabetes in the proband is the major determinant of risk in HLA DR3-DQ2/DR4- DQ8 siblings. Diabetes 2014: 63: 1041-1047.
327. Harjutsalo V, Podar T, Tuomilehto J. Cumulative incidence of type I
diabetes in 10,168 siblings of Finnish young-onset type 1 diabetic patients. Diabetes 2005; 54: 563-569.
328. Dorman JS, McCarthy BJ, OLeary LA, Koehler AN. Risk factors for insu-lin-dependent diabetes. In Diabetes in America, 2nd, Aubert R (Ed), Diane Pub Co. 1995, p. 165.
329. Pietropaolo M, Becker DJ. Type 1 diabetes intervention trials. Pediatr Diabetes 2001; 2:2.
330. Kimpimaki T, Kupila A, Hamalainen AM, Kukko M, Kulmala P, Savola K, et al. The first signs of beta-cell autoimmunity appear in infancy in genetically susceptible children from the general population: the Finnish Type 1 Diabetes Prediction and Prevention Study. J Clin Endocrinol Metab 2001;80(10):4782-8.
331. Ziegler AG, Bonifacio E, BABYDIAB-BABYDIET Study Group. Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes. Diabetologia. 2012 Jul; 55(7):1937-43.
332. Ziegler AG, Ziegler R, Vardi P, et al. Life-table analysis of progression to diabetes of anti-insulin autoantibody-positive relatives of individuals with type I diabetes. Diabetes 1989; 38:1320.
333. Bingley PJ. Interactions of age, islet cell antibodies, insulin autoantibodies, and first-phase insulin response in predicting risk of progression to IDDM in ICA+ relatives: the ICARUS data set. Islet Cell Antibody Register Users Study. Diabetes 1996; $45: 1720$.
334. Pietropaolo M, Becker DJ, LaPorte RE, et al. Progression to insulin-requiring diabetes in seronegative prediabetic subjects: the role of two HLA-DQ high-risk haplotypes. Diabetologia 2002; 45:66.
335. Neifing JL, Greenbaum CJ, Kahn SE, et al. Prospective evaluation of betacell function in insulin autoantibody-positive relatives of insulin-dependent diabetic patients. Metabolism 1993; 42:482.
336. Dean BM, Becker F, McNally JM, et al. Insulin autoantibodies in the prediabetic period correlation with islet cell antibodies and development of diabetes. Diabetologia 1986; 29:339.
337. Srikanta S, Ricker AT, McCulloch DK, et al. Autoimmunity to insulin, beta cell dysfunction, and development of insulin-dependent diabetes mellitus, Diabetes 1986; 35:139.
338. Ziegler AG, Hummel M, Schenker M, Bonifacio E, Autoantibody appearance and risk for development of childhood diabetes in offspring of parents withtype 1 diabetes; the 2-year analysis of the German BABYDIAB Study, Diabetes 1999; 48:460.
339. Achenbach P, Warncke K, Reiter J, et al, Stratification of type 1 diabetes
risk on the basis of islet autcantibody characteristics. Diabetes 2004; 53:384,
340. Morran MP, Casu A, Arena VC, et al. Humoral autoimmunity against the extracellular domain of the neuroendocrine autcantigen IA- 2 heightens the risk of type 1 diabetes. Endocrinology 2010; 151:2528.
341. Atkinson MA, Maclaren NK, Scharp DW, et al. $64,000 \mathrm{Mr}$ autoantibodies as predictors of insulin-dependent diabetes. Lancet 1990; 335:1357.
342. Aanstoot HJ, Sigurdsson E, Jaffe M, et al. Value of antibodies to GAD65 combined with islet cell cytoplasmic antibodies for predicting IDDM in a childhood population. Diabetologia 1994, 37.917.
343. Spinas GA, Snorgaard O, Hartling SG, et al. Elevated proinsulin levels related to islet cell antibodies in first-degree relatives of IDDM patients. Diabetes Care 1992; 15:632.
344. Haller MJ, Atkinson MA, Schatz D. Type 1 diabetes mellitus; etiology, presentation, and management. Peđiatr Clin North Am 2005; 52:1553
345. Quinn M, Fleischman A, Rosner B, et al. Characteristics at diagnosis of type 1 diabetes in children younger than 6 years. J Pediatr 2006; 148:366.
346. Couper J, Donaghue K. Phases of diabetes. Pediatr Diabetes 2007; 8; 4447
347. Roche EF, Menon A, Gill D, Hoey H. Clinical presentation of type 1 diabetes. Pediatr Diabetes 2005; 6:75.
348. Gonzalez, G.C., Capel, I., Rodriguez-Espinosa, J., et al. (2007) Thyroid autommunity at onset of type 1 diabetes as a predictor of thyroid dysfunction. Diabetes Care, 30, 1611-1612 doi:10.2337/de07-1292
349. Falck A. Laatikainen L. Diabetic cataract in children. Acta Ophthalmol Scand 1998, 76:238.
350. Datta V, Swift PG, Woodruff GH, Harnis RF. Metabolic cataracts in newly diagnosed diabetes. Arch Dis Child 1997; 76:118.
351. Sonmez B, Bozkurt B, Atmaca A, et al. Effect of glyoemic control on refractive changes in diabetic patients with hyperglycemia. Comea 2005; 24:531.
352. Szypowska, A. \& Skórka, A. The risk factors of ketoacidosis in children with newly diagnosed type 1 diabetes mellitus. Pediatr. Diabetes $12,302-$ 306 (2011).
353. Dunger DB, Sperling MA, Acerini CL, Bohn DJ, Daneman D, Danne TP, Glaser NS, Hanas R, Hintz RL, Levitsky LL, Savage MO, Tasker RC, Wolfsdorf J: European Society for Paediatric Endocrinology/ Lawson Wilkins Pediatric Endocrine Society consensus statement on diabetic ketoacidosis in children and adolescents. Pediatrics 113:el 33-el 40, 2004
354. Neu A. Willasch A, Ehehalt S, Hub R, Ranke MB; DLARY Group BadenWuerttemberg. Ketoacidosis at onset of type 1 diabetes mellitus in chil-dren-frequency and clinical presentation. Pediatr Diabetes 2003 Jun,4(2):77-81.
355. Usher-Smith, J. A. Thompson. M. Ercole, A. \& Walter, F. M. Variation between countries in the frequency of diabetic ketoacidosis at first presentation of type 1 diabetes in children: a systematic review. Diabetologia 55, 2878-2894 (2012).
356. Bowden SA, Duck MM, Hoffman RP (2008) Young children ($<5 \mathrm{yr}$) and adolescents ($>12 \mathrm{yr}$) with type 1 diabetes mellitus have low rate of partial remission diabetic ketoacidosis is an important risk factor. Pediatr Diabetes 9:197-201
357. Abdul-Rasoul M, Habib H, Al-Khouly M (2000) "The honeymoon phase" in children with type 1 diabetes mellitus: frequency, duration, and influential factors. Pediatr Diabetes 7:101-107.
358. Fernandez Castaner M, Montana E, Camps I, Biarnes J, Merino JF, Escriba JM , et al. Ketoacidosis at diagnosis is predictive of lower residual beta-cell function and poor metabolic control in type 1 diabetes. Diabetes Metab 1996;22:349-55.
359. Fernandez Castanter M, Gonzalbez J, Carrera MJ et al (1997) The influence of clinical presentation and metabolic control of insulin dependent diabetes in the evolution of residual insulin secretion. A prospective study at five years. Medicina Clinica 109:328-332.
360. Rewers A, Brown A, Rewers M. Diabetic ketoacidosis at diagnosis predicts poorer glycemic control in the initial course of type 1 diabetes. Abstract presented at the Pediatric Society Meeting, Toronto, 2007.
361. Rewers A, Chase HP, Mackenzie T, et al. Pretictors of acute complications in children with type 1 diabetes. JAMA 2002; 287:2511.
362. Liss DS, Waller DA, Kemard BD, Mclntire D, Capra P, Stephens J (1998) Psychiatric illness and family support in children and adolescents with diabetic ketoacidosis: a controlled study. J Am Acad Child Adolesc Psychiatr 37:536-544
363. Wolfsdorf J. The Intemational Society of Pediatric and Adolescent Diabetes guidelines for maragement of diabetic ketoacidosis: Do the guidelines need to be modified? Pediatr Diabetes 2014; 15:277,
364. Wolfsdorf JI, Allgrove J, Craig ME, et al. ISPAD Clinical Practice Consensus Guidelines 2014. Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr Diabetes 2014; 15 Supp1 20:154.
365. Wolfsdorf I, Glaser N, Sperling MA. Diabetic ketoacidosis in infants,
children and adolescents; a consensus statement from the American Diabetes Association. Diabetes Care 2006; 29: 1150-1159.
366. Dunger DB, Sperling MA, Acerini CL, et al. ESPE/LWPES consensus statement on diabetic ketoacidosis in children and adolescents. Arch Dis Child 2004; 89:188.
367. Neufeld ND, Raffel LJ, Landon C, et al. Early presentation of type 2 diabetes in Mexican-American youth Diabetes Care 1998; 21:80.
368. Koves IH, Neutze J, Donath S, et al. The accuracy of clinical assessment of dehydration during diabetic ketoacidosis in childhood. Diabetes Care 2004; 27:2485.
369. Neu A, Ehehalt S, Willasch A, Kehrer M, Hub R, Ranke MB. Varying clinical presentations at onset of type 1 diabetes mellitus in children-epidemiological evidence for different subtypes of the disease? Pediatr Diabetes 2001;2:147-53
370. Usher-Snith JA, Thompson MJ, Sharp SJ, Walter FM Factors associated with the presence of diabetic ketoacidosis at diagnosis of diabetes in children and young adults: a systematic review. BMJ 2011; 343:d4092.
371. Klingensmith GJ, Tamborlane WV, and Wood J, et al. Diabetic ketoacidosis at diabetes onset: still an all too common threat in youth. J Pediatr 2013; 162:330.
372. Edge JA, Roy Y, Bergomi A, et al. Conscious level in children with diabetic ketoacidosis is related to severity of acidosis and not to blood glucase concentration. Pediatr Diabetes 2006; 7:11.
373. Edge JA, Ford-Adams ME, Dunger DB. Causes of death in children with insulin dependent diabetes 1990-96. Arch Dis Child 1999; 81:318.
374. Rosenbloom, A. L. Intracerebral crises during treatment of diabetic ketoacidosis. Diabetes Care 13, 22-33 (1990).
375. Lokulo-Sodipe, K., Moon, R. J., Edge, J. A. \& Davies, J. H. Identifying targets to reduce the incidence of dabetic ketoacidosis at diagnosis of type 1 diabetes in the UK. Arch. Dis. Child. 99, 438-442 (2014).
376. Curtis JR, To T, Muirhead S, et al. Recent trends in hospitalization for diabetic ketoacidosis in ontario children. Diabetes Care 2002; 25:1591.
377. Holmes JF, Palchak MJ, MacFarlane T, Kuppermann N. Performance of the pediatric Glasgow coma scale in children with blunt head trauma. Acad Emerg Med 2005; 12:814.
378. Marcin JP, Glaser N, Barnett P, et al. Factors associated with adverse outcomes in children with diabetic ketcacidosis-related cerebral edema. J Pediatr 2002; 141:793.
379. Liu LL, Lawrence JM, Davis C, et al. Prevalence of overweight and obesity
in youth with diabetes in USA: the SEARCH for Diabetes in Youth study. Pediatr Diabetes 2010; 11:4.
380. Diamond Project Group. Incidence and trends of childhood type 1 diabetes worldwide 1990-1999. Diabet Med 2006: 23: 857-866.
381. World Health Orgatisation Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHOIDF Consultation. Geneva, Switzerland: World Health Organisation, 2006.
382. American Diabetes Association. 2. Classification and Diagncsis of Diabetes. Diabetes Care 2017; 40:S11.
383. World Health Organization. Use of Glycated Haemoglobin (HbAlc) in the Diagnosis of Diabetes Mellitus. Geneva, Switzerland: World Health Organization, 2011.
384. Dabelea D, Pihoker C, Talton JW, et al. Etiological approach to characterization of diabetes type: the SEARCH for Diabetes in Youth Study. Diabetes Care 2011; 34:1628.
385. Bry L, Chen PC, Sacks DB. Effects of hemoglobin variants and chertically modified derivatives on assays for glycohemoglobin. Clin Chem 2001; 47:153.
386. Maria E. Craig.Andrew Hattersley, Kim C. Donaghue, ISPAD Clinical Practice Consensus Guidelines 2009 Compendium. Definition, epidemidogy and classification of diabetes in children and adolescents. Pediatric Diabetes 2009; 10 (Suppl. 12): 1-2).https://doi.org/10.1111/j.13995448.2009 .00568 x
387. Insel RA, Dunne JL, Atkinson MA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association Diabetes Care 2015;38:1964-1974 Google ScholarCrossref
388. Keen H, Jarrett RJ. Environmental factors and genetic interactions. In: Creutzfeld W, Kobberling J, Neel JV, eds. The Genetics of Diabetes Mellitus, Berlin: Springer-Verlag, 1976:203-214
389. Macaluso CJ, Bauer UE, Deeb LC, et al. Type 2 diabetes mellitus among Florida children and adolescents, 1994 through 1998. Public Health Rep 2002; 117:373-379.
390. Kaminski BM, Klingensmith GJ, Beck RW, et al. Body mass index at the time of diagnosis of autoimmune type 1 diabetes in children. I Pediatr 2013; 162:736.
391. Fagot-Campagna A, Pettitt DJ, Engelgau MM, et al. Type 2 diabetes among North American children and adolescents: an epidemiologic review and a public health perspective. J Pediatr 2000; 136:664.
392. Copeland KC, Zeitler P. Geffiner M, et al Characteristics of adolescents and youth with recent-onset type 2 diabetes: the TODAY cohort at baseline. J Clin Endocrinol Metab 2011;96:159.
393. Sabbah E, Savola K, Ebeling T, Kulmala P, Vahasalo P, Ilonen J, et al. Genetic, autoimmune, and clinical characteristics of childhood- and adultonset type I diabetes. Diabetes Care. 2000;23:1326-1332.
394. Klingensmith GJ, et al. The presence of GAD and IA-2 antibodies in youth with a type 2 diabetes phenotype. results from the TODAY study. Diabetes Care 2010; 33:1970.
395. Hathout EH, Thomas W, El-Shahawy, Nabab F, Mace JW. Diabetic autoimmune markers in children and adolescents with type 2 diabetes. Pediatrics (http://www.pediatrics. org/cgi/content/full/107/6/c102), 2001,
396. Umpaichitra V, Banerji MA, Castells S. Autoantibodies in children with type 2 diabetes mellitus. J Pediatr Endocrinol Metab 2002; 15:525-530.
397. Hjort R, Ahlqvist E, Carlsson PO, Grill V, Groop L, Martinell M, Rasouli B, Rosengren A, Tuomi T, Asvold BO, Carlsson S. Overweight, obesity and the risk of LADA: results from a Swedish case-control study and the Norwegian HUNT Study.. Diabetologia. 2018 Jun; 61(6):1333-1343
398. Leslie RD, Williams R, Pozzilli P. Clinical review: Type 1 diabetes and latent autoimmune diabetes in adults: one end of the rainbow.J Clin Endocrind Metab. 2006 May; 91(5);1654-9.
399. Lampasona V, Petrone A, Tiberti C, Capizzi M, Spoletini M, di Pietro S, Songini M, Bonicchio S, Giorgino F, Bonifacio E, Bosi E, Buzzetti R, Non Insulin Requiring Autoimmune Diabetes (NIRAD) Study Group.. Zinc transporter 8 antibodies complement GAD and IA-2 antibodies in the identification and characterization of adult-onset autoimmune diabetes. Non Insulin Requiring Autoimmune Diabetes (NIRAD) 4. Diabetes Care. 2010 Jan; 33(1):104-8.
400. Diagnosis and classification of diabetes mellitus. Diab care. 2009;32 (Suppl 1):S62-S67.
401. Liese AD, D'Agostino RB, Jr, Hamman RF, et al. The burden of dabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study peds. 2006;118:1510-1518. [PubMed] [Google Scholar] [Ref list].
402. Pietropaolo M, Eisenbarth GS. Autoantibodies in human diabetes. Cum Dir Autoimmun 2001, 4:252.
403. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997; 20:1183.
404. Diagnosis and classification of diabetes mellitus. Diabetes Care 2008;31

Suphl 1:S55-60.
405. Knip M. Can we predict type 1 diabetes in the general population? Diabetes Care 2002;25(3):623-5.
406. Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001,358(9277):221-9
407. Rosenbloom AL. Hot topic. Fetal growth, adrenocortical function, and the risk for type 2 diabetes. Pediatric Diabetes 2000; 1:150-154
408. Rosenbloom AL, Joe JR, Young RS, Winter WE. Emerging epidemic of type 2 diabetes in youth. Diabetes care 1999; 22:345-354.
409. Rosenbloom AL. Type 2 diabetes in children American Association for Clinical Chemistry. Diagn Endocrinol, Immunol Metabolism 2000; 18:143-153.
410. Mayer-Davis EJ, Bell RA, Dabelea D, et al. The many faces of diabetes in American youth type 1 and type 2 diabetes in five race and ethric populations: the SEARCH for Diabetes in Youth Study. Diabetes Care 2009; 32 Suppl 2:S99.
411. Steck AK, Johnson K, Barriga KJ. Age of Islet Autoantibody Appearance and Mcan Levels of Insulin, but Not GAD or IA-2 Autoantibodies, Predict Age of Diagnosis of Type 1 Diabetes. Diabetes Care 2011; 34:1397.
412. Naylor R, Philipson LH. Who should have genetic testing for maturity-onset diabetes of the young? Clin Endocrinol (Oxf) 2011; 75:422.
413. Ramesh SC, Marshall I. Clinical Suspicion of Maturity Onset of Diabetes of the Young in Pediatric Patients Diagnosed with Diabetes Mellitus, Indian J Pediatr 2011 ; Dee 10.
414. Thanabalasingham G, Owen KR. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ 2011; 343:d6044.
415. Pinhas-Hamiel O, Zeitler P. The global spread of type 2 diabetes mellitus in children and adolescents. J Pediatr 2005; 146:693.
416. De Ferranti SD, Osganian SK. Epidemiology of paediatric metabolic syndrome and type 2 diabetes mellitus. Diab Vasc Dis Res 2007; 4:285
417. Butler AE, Galasso R, Meier JJ, Basu R, Rizza RA, Butler PC. Modestly increased beta cell apoptosis but no increased beta cell replication in recentonset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia 2007;50(11):2323-31.
418. Molbak AG, Christau B, Mamer B, Borch-Johnsen K, Nerup J. Incidence of insulin-dependent diabetes mellitus in age groups over 30 years in Denmark. Diabet Med 1994;11(7):650-5.
419. Karjalainen J, Salmela P, Ilonen J, Surcel HM, Knip M. A comparison of childhood and adult type I diabetes mellitus. N Engl J Med

1989;320(14):881-6.
420. Libman IM, Becker DJ. Coexistence of type 1 and type 2 diabetes mellitus: "double" diabetes? Pediatr Diabetes 2003;4(2):110-3.
421. Winter We, Maclaren NK, Riley wJ, ClarkeDw, Kappy MS, Spillar RP. Maturity-onset diabetes of youth in black Americans. N Engl J Med 1987: 316:285-291.
422. Banerji MA. Chaiken RL, Juey H, et al GAD antibody negative NIDDM in adult with black subjects with diabetic ketoacidosis and increased frequency of human leukocyte antigen DR3 and DR4: flatbush diabetes. Diabetes 1994; 43:741-745.
423. International Diabetes Federation. The Diabetes Atlas. ThirdEdition Brussels: International Diabetes. Federation; 2006
424. American Diabetes Association. Type 2 diabetes in children and adolescents: consensus conference report Diabetes Care 2000; 23:381-389,
425. Howson JM, Rosinger S, Smyth DJ, Boehm BO, ADBW-END Study Group. Todd JA. Genetic analysis of adult-onset autoimmune diabetes. Diabetes, 2011;60:2645-2653
426. Hernandez M, Mollo A, Marsal JR, Esquerda A, Capel I, Puig-Damingo M , et al. Insulin secretion in patients with latent autoimmune diabetes (LADA): half way between type 1 and type 2 diabetes. Action LADA 9 . BMC Endocr Disord. 2015;15:1.
427. Buzzetti R, Zampetti S, Maddaloni E. Adult-onset autoimmune diabetes: current knowledge and implications for management. Nat Rev Endocrind. 2017 Nov, 13(11):674-686.
428. Naik RG, Palmer JP. Latent autoimmune diabetes in adults (LADA). Rev Endocr Metab Disord. 2003 Sep, 4(3) 233-41.
429. Tucemi T, Carlsson A, Li H, Isomaa B, Miettinen A, Nilsson A, et al. Clinical and genetic charateristics of type 2 diabetes with and without GAD antibodies. Diabetes. 1999; 48:150-157.
430. Buzzetti R, Di Pietro S, Giaccari A, Petrone A, Locatelli M, Suraci C, Capizzi M, Arpi ML, Bazzigaluppi E, Dotta F, Bosi E. High titer of autoantibodies to GAD identifies a specific phenotype of adult-onset autoimmune diabetes. Non Insulin Requiring Autoimmune Diabetes Study Group. Diabetes Care. 2007 Apr, 30(4):932-8.
431. Hawa MI, Kolb H, Schloot N, Beyan H, Paschou SA, Buzzetti R, Mauricio D, De Leiva A, Yderstraede K, Beck-Neilsen H, Tuomilehto J, Sarti C, Thivolet C, Hadden D, Hunter S, Schernthaner G, Scherbaum WA, Williams R, Brophy S, Pozzilli P, Leslie RD, Action LADA consortiumL. Adult-onset autoimmune diabetes in Europe is prevalent with a broad
clinical phenotype: Action LADA 7. Diabetes Care. 2013 Apr: 36(4):90813.
432. Maddaloni E, Lessan N, Al Tikriti A. Buzzetti R, Pozzilli P, Barakat MT. Latent autoimmune diabetes in adults in the United Arab Emirates: clinical features and factors related to insulin-requirement. PLoS One. 2015; 10:e0131837.
433. Tumer R. Stratton I. Hotton V. Manley S. Zimmet P, Mackay IR, et al. UKPDS 25 : autoantibodies to islet-cell cytoplamm and glutamic acid decarboxylase for predictice of insulin requirement in type 2 diabetes. UK Prospective Diabetes Sudy Group. Lancet 1997;350:1288-1293.
434. Takeda H, Kawasaki E, Shimizı I. Kcnoue E. Fujiyama M, Murao S. et al Clinical, autoimmune, and genetic characteristics of adult-consct diabetic patients with GAD autoantibodies in Japan (Elime Study) Diabetes Care. 2002;25:995-1001.
435. Zinman B, Kahn SE, Haffner SM, ONeill MC, Heise MA, Freed MI, et aL. Phendypic characteristics of GAD antiboty-positive recently diagnosed patients with type 2 diabetes in North Ancrica and Europe Diabetes. 2004;53:3193-3200.
436. Radtke MA, Midthjell K, Nilsen TI, Grill V. Heterogeneity of patients with latent autormmune diabetes in adults: linkage to autoimmunity is apparent only in those with perceived need for insulin treatment. Results from the Nord-Trondelag Health (HUNT) study. Diabetes Care. 2009;32:245-250.
437. QiX, Sun J, Wang J, Wang PP, XuZ, Muphy M, et al. Frevalence and correlates of latent autommune diabetes in adults in Tianjim, China: a population-based cross-sectional study. Diabetes Care. 2011:34:66-70.
438. Zhou Z, Xiang Y, Ji L, Jia W, Ning G, Huang G, et al. Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study); a nationwide, multicenter, clinic-based crosssectional study. Diabetes. 2013;62:543-550.
439. Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet. 2014; 383:1084-1094.
440. Cervin C, Lyssenko V, Bakhtadze E, Lindholm E, Nilsson P, Tuomi T, Cilio CM, Groop L. Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes.. Diabetes. 2008 May; 57(5):1433-7.
441. Andersen MK, Lundgren V, Turunen JA, Forsblom C, Isomaa B, Groop PH, Groop L, Tuomi T. Latent autcimmune diabetes in adults differs genetically from classical type 1 diabetes diagnosed after the age of 35 years. Diabetes Care. 2010 Sep, 33(9):2062-4.
442. Haller K, Kisand K, Pisarev H, Salur L, Laisk T, Nemvalts V, Uibo R. Insulin gene VNTR, CTLA-4 +49A/G and HLA-DQB1 alleles distinguish latent autoimmune diabetes in adults from type 1 diabetes and from type 2
diabetes group Tissue Antigens, 2007 Feb; 69(2):121-7.
443. Van der Auwera BJ, Vande alle CL, Schuit FC, Winnock F, De Leeuw IH, Van Imschoot S, Lamberigts G, Gorus FK. CTLA-4 gene polymorphism confers susceptibility to insulin-dependent diabetes mellitus (IDDM) independently from age and from other genetic or immune disease markers. The Belgian Diabetes Registry. Clin Exp Immunol. 1997 Oct, 110(1):98-103.
444. Pozzilli P, Di Mario U. Autoimmune diabetes not requiring insulin at diagnosis (latent autoimmune diabetes of the adult): definition, characterization, and potential prevention. Diabetes Care. 2001;24:1460-1467.
445. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2004;27(Suppl 1):S5-S10.
446. Barker A, Lauria A, Schloot N, Hosszufalusi N, Ludvigsson J, Mathieu C, Mauricio D, Nordwall M, Van der Schueren B, Mandrup-Poulsen T, Scherbaum WA, Weets I, Gorus FK, Wareham N, Leslie RD, Pozzilli P. Age-dependent decline of β-cell function in type 1 diabetes after diagnosis: a multi-centre longitudinal study. Diabetes Obes Metab. 2014 Mar; 16(3):262-7.
447. Taro Marvyama ${ }^{1}$. Terumichi Nakagawa, Akira Kasuga, Mritwou Murata. Heterogeneity among patients with latent autoimmune diabetes in adults. Diabetes Metab Res Rev. 2011 Nov,27(8): 971-4.doi: 10.1002/dmm. 1238.
448. A Falomi ${ }^{1}$, G Gambelunghe, F Forini, G Kassi, A Cosentino, P Candeloro, G B Bolli, P Brunetti, F Calcinaro Autoantibody recognition of COOH -terminal epitopes of GAD65 marks the risk for insulin requirement in adult-onset diabetes mellitus. J Clin Endocrinol Metab. 2000 Jan;85(1):309-16. doi: 10.1210/jcem.85-1.6301.
449. M. Landin-Olsson, J. P. Palmer, A. Lemmarks, L. Blom, G. Sundkvist, L. Nystrōm \& G. Dahlquist. Predictive value of islet cell and insulin autoantibodies for Type 1 (insulin-dependent) diabetes mellitus in a populationbased study of newly-diagnosed diabetic and matched control children. Diabetologia volume 35, pages 1068-1073 (1992)
450. Leo K Niskanen, MD;Timamaija Tuorni, MD;Jukka Karjalainen, MD;Leif C Groop, MD;Matti I J Uusitupa, MD.GAD Antibodies in NIDDM: Tenyear follow-up from the diagnosis. Diabetes Care 1995;18(12):1557-1565, https:/doi.crg/10.2337/diacare, 18.12.1557.
451. Van Den Driessche A, Eenkhoorn V,, Van Gaal L., De Block C. Type I diabetes and autoimmune polyglandular syndrome: a clinical review. Netherlands Joumal of Medicine. 2009;67(11):376-387.
452. Barker J. M. Clinical review: type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening Journal of Clinical

Endocrinology and Metabolism 2006:91(4):1210-1217. doi: 10.1210/jc.2005-1679.
453. Watkins RA, Evans-Molina C, Blum JS, Dimeglio LA. Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review. Transl Res. 2014
454. Kakleas K., Soldatou A., Karachaliou F., Karavanaki K. Associated autoimmune diseases in children and adolescents with type 1 T1DM (T1DM) Autoimmunity Reviews. 2015;14(9):781-797, doi: $10.1016 / \mathrm{j} . \mathrm{au}-$ trev. 2015.05 .002.
455. Pociot F -, McDermott M. F. Genetics of type 1 diabetes mellitus. Genes and Immunity. 2002;3(5):235-249. doi: 10.1038/sj.gene.6363875Q
456. Levin L, Ban Y, Concepcion E, et al. Analysis of HLA genes in families with autoimmune diabetes and thyroiditis. Hum Immunol 2004; 65:640.
457. Allen, S.; Huber, J. \& Devendra, D. (2008). Prevalence of organ-specific autoantibodies in childhood- and adult-onset type 1 diabetes. Ann N Y Acad Sci., Vol.1150, pp. 260-262
458. Warncke K, Frohlich-Reiterer EE, Thon A, et al. Polyendocrinopathy in children, adolescents, and young adults with type 1 diabetes: a multicenter analysis of 28,671 patients from the German/Austrian DPV-Wiss database. Diabetes Care 2010; 33:2010.
459. Jonsdottir B, Andersson C, Carlsson A et al. Thyroid autoimmunity in relation to islet autoantibodies and HLA-DQ genotype in newly diagnosed type 1 diabetes in children and adolescents. Diabetologia 2013: 56: 17351742.
460. Zhernakova A, Withoff S, Wijmenga C. Clinical implications of shared genetics and pathogenesis in autoimmune diseases. Nat Rev Endocrinol 2013: 9: 646-659.
461. Sumnik Z, Kolouskova S, Malcova H et al. High prevalence of coeliac disease in siblings of children with type 1 diabetes. Eur J Pediatr 2005: 164: 9-12. 41 .
462. Mohn A. Di Michele S, Faricelli R, Martinotti S, Chiarelli F. Increased frequency of subclinical hypothyroidism and thyroid-associated antibodies in siblings of children and adolescents with type 1 diabetes mellitus. Eur J Endocrinol 2005: 153: 717-718.
463. Kordonouri O , Klinghammer A , Lang EB, Graters-Kieslich A , Grabert M, Holl RW.Thyroid autoimmunity in children and adolescents with type 1 diabetes: a multicenter survey Diabetes Care. 2002 Aug; 25(8):1346-50,
464. Kakleas K, Paschali E, Kefalas N, Fotinou A, Kanariou M, Karayianni C, Karavanaki K . Factors for thyroid autoimmonity in children and adolescents
withtype 1 diabetes mellitus. Ups J Med Sci. 2009; 114(4):214-20.
465. Peczyniska J, Urban M., Glowinska-Olszewska B., Florys B. Prevalence of thyroid diseases in children and adolescents with diabetes type 1. Ped Endocrinology. 2006;5(1):33-38.
466. Diana T, Daiber A, Oelze M, Neumann S, Olivo PD, Kanitz M, et al. . Stimulatory TSH-Receptor Antibcdies and Oxidative Stress in Graves Disease. J Clin Endocrinol Metab (2018) 103(10):3668-77. 10.1210/jc.2018-00509
467. Kordonouri, O., Charpenter, N. and Hartmann, R. GADA positivity at cnset of type 1 diabetes is a risk fac- tor for the development of autoimmune thyroiditis. Pedi- atric Diabetes 2011; 12, 31-33. doi:10.1111/j.1399$5448.2010 .00666 . x$
468. Kalicka-Kasperczyk, A., Dziatkowiak, H., Bratrik-Mi-kuta, A, ct al. Thyroid peroxidase antibodies and thyroid disease in children and adolescents with newly diagnosed type 1 diabetes. Przeglad Lekarski 2002; 59, 509513.
469. Dittmar M, Kahaly GJ. Polyglandalae autoinmune syndromes; inmunogenetics and long-term follow-up. J Clin Endocrinol Metab (2003) 88(7):2983-92. 10.1210/jc.2002-021845
470. Sumnik Z, Drevinek P, Snajderová M, etal. HLA-DQ polymorphisms modify the risk of thyroid autoimmunity in children with type 1 diabetes mellitus, J Pediatr Endocrinol Metab 2003; 16;851.
471. Roldan MB , Alonso M, Barrio R. Thyroid autoimmunity in children and adolescents with Type 1 diabetes mellitus. Diabetes Nutr Metab 1999; 12:27.
472. Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev (2016) 15(7):644 8. 10.1016/jautrev. 2016.02 .017
473. R Kadiyala ${ }^{1}$, R Peter, OE Okosieme.Thyroid dysfunction in patients with diabetes: clinical implications and screening strategies. Int J Clin Pract. 2010 Jul; $64(8): 1130-9$. doi: $10.1111 / \mathrm{j} .1742-1241.2010 .02376 . \mathrm{x}$.
474. Montovani, R.M., Montovani, L.M. and Dias, V.M. Thyroid autommunity in children and adolescents with type 1 diabetes mellitus: Prevalence and risk factors. Jour- nal of Pediatric Endocrinology \& Metabolism 2007, 20, 669-675.
475. Karavanaki K, Kakleas K, Paschali E, et al. Screening for associated autoimmunity in children and adolescents with type 1 diabetes mellitus (TIDM). Horm Res 2009; 71:201.
476. Bonifacio E, Mayr A, Knopti A, Ziegler AG. Endocrine autoimmunity in families with type 1 diabetes: frequent appearance of thyroid autoimmunity during late childhood and adolescence. Diabetologia 2009; 52:185.
477. Kordonouri O, Hartmann R, Deiss D, Wilms M, Griters-Kieslich A.Natural course of autoimmune thyroiditis in type 1 diabetes: association with gender, age, diabetes duration, and puberty.Arch Dis Child 2005 Apr, 90(4):411-4.
478. Shun CB, Donaghue KC, Phelan H. Twigg SM, Craig ME, Thyroid autoimmunity in type 1 diabetes: systematic review andmeta-analysis.DiabetMed 2014: 31: 126-135.
479. Elizabeth N Pearce ${ }^{\text {t }}$, Alan P Farwell, Lewis E Braverman.Thyroiditis. N Engl J Med 2003 Jun 26;348(26):2646-55. doi: 10.1056/NEJMra021194.
480. Katahira M, Maeda H, Tosaki T, Segawa S. The human leukocyte antigen class II gene has different contributions to autoimmune type 1 diabetes with or without autoimmune thyroid disease in the Japanese population, Diabetes Res Clin Pract 2009; 85:293.
481. Flesch BK, Matheis N, Alt T, et al. HLA class II haplotypes differentiate between the adult autoimmune polyglandular syndrome types II and III. J Clin Endocrinol Metab 2014; 99:E177,
482. Denzer C, Karges B, N ake A et al. Subclinical hypothyroidism and dyslipidemia in children and adolescents with type 1 diabetes mellitus. Eur J Endocrinol 2013: 168: 601-608.
483. Mohn A., Di Michele S., Di Luzio R., Tumini S., Chiarelli F. The effect of subclinical hypothyroidism on metabolic control in children and adolescents with type 1 diabetes mellitus. Diabetic Medicine. 2002;19(1):70-73. doi: $10.1046 / \mathrm{j} .1464-5491.2002 .00635 \mathrm{x}$.
484. Hage M, Zantout MS, Azar ST. Thyroid disorders and diabetes mellitus. J Thyroid Res 2011;10(4061):1-7.
485. Chase HP, Garg SK, Cockerham RS, et al. Thyroid hormone replacement and growth of children with subclinical hypothyroidism and diabetes. Diabet Med 1990; 7:299.
486. Dost A. Rohrer TR, Fröhlich-Reiterer E, et al. Hyperthyroidism in 276 Children and Adolescents with Type 1 Diabetes from Germany and Austria. Horm Res Paediatr 2015; 84:190.
487. Sinclair D. Analytical aspects of thyroid antibodies estimation Autoimmunity 2008;41(1):46-54, doi: 10.1080/08916930701619466.
488. Mitrou P., Raptis S. A., Dimitriadis G. Insulin action in hyperthyroidism: a focus on muscle and adipose tissue. Endocrine Reviews. 2010,31(5):663679. doi: 10.1210/er.2009-0046.
489. American Diabetes Association. 12. Children and Adolescents. Diabetes Care 2017; 40:S105.
490. Joseph J, Saroha V, Payne H, et al. Thyroid function at diagnosis of type I
diabetes. Arch Dis Child 2011: 96:777.
491. Gilani BB, MacGillivray MH, Voorhess ML, et al. Thyroid hormone abnormalities at diagnosis of insulin-dependent diabetes mellitus in children. J Pediatr 1984; 105:218.
492. Stene LC, Oikarinen S. Hyoty H, Barriga KJ, Norris JM, et al. Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY) Diabetes. 2010,59.3174-3180.
493. Brown, RS. (2007). Euthyroid autommune thyroiditis in children and adolescents with type 1 diabetes mellitus: to treat or not to treat?. Pediatr Diabetes, Vol.8, No.4, pp. 177-179
494. Rivkees SA, Mattison DR. Ending propylthiouracil induced liver failure in children. N Engl J Med 2009: 360: 1574-1575.
495. Kordonouri, O.; Maguire, AM.; Knip, M;; Schober, E.; Lorini, R;; Holl, RW. \& Donaghue, KC. (2009). Other complications and associated conditions with dabetes in children and adolescents. Pediatr Diabetes, Vol.12, No. 10, pp. 204-210
496. Fasano A, Catassi C. Clinical practicc. Celiac discasc, N Engl J Med. 2012;367:2419-2426.
497. Kang JY, Kang AH, Green A, Gwee KA, Ho KY. Systematic review; worldwide variation in the frequency of coelare dispase and changes over time. Aliment Phammacol Ther 2013;38:226-245.
498. Newton KP, Singer SA. Celiac disease in children and adolescents: special considerations. Semin Immuopathol. $2012 \mathrm{Jul} ; 34(4): 479-96$.
499. Poulain C, Johanet C, Delcroix C, Lévy-Marchal C, Tubiana-Rufi N. Prevalence and clinical features of celiac disease in 950 children with type 1 diabetes in France. Diabetes Metab. 2007 Dec; 33 (6)-453-8
500. Mahmud, F.H., et al., ISPAD Clinical Practice Consensus Guidelines 2018: Other complications and associated conditions in children and adolescents with type 1 diabetes. Pediatr Diabetes, 2018. 19 Suppl 27; p. 275-286.
501. Dube C, Rostom A, Sy R, Cranney A, Saloojee N, et al. The prevalence of celiac disease in average-risk and at-risk Westem European populations: a systematic review. Gastroenterology. 2005;128:S57-67.
502. Gillett PM, Gillett HR, Israel DM, Metzger DL, Stewart L, et al. High prevalence of celiac disease in patients with type 1 diabetes detected by antibodies to endomysium and tissue transglutaminase Can J Gastroenterol 2001;15:297-301.
503. Volta U, Tovoli F, Caio G. Clinical and immunological features of celiac disease in patients with Type 1 diabetes mellitus. Expert Rev Gastroenterol

Hepatol. 2011:5:479-487.
504. Walker-Smith JA, Vines R, Grigor W, Coeliac disease and diabetes. Lancet. 1969;2:650.
505. Glastras SJ, Craig ME, Verge CF, Chan AK, Cusumano JM, Donaghue KC. The role of autoimmunity at diagnosis of type 1 diabetes in the development of thyroid and celiac disease and microvascular complications. Diabetes Care 2005: 28: 2170-2175.
506. Larsson K , Carlsson A , Cederwall E et al. Annual screening detects celiac disease in children with type 1 diabetes. Pediatr Diabetes 2008:9: 354-359.
507. Salardi S, Volta U, Zucchini S et al. Prevalence of celiac disease in children with type 1 diabetes mellitus increased in the mid-1990s: an 18-year longitudinal study based on anti-endomysial antibodies. J Pediatr Gastroenterol Nutr 2008: 46: 612-614.
508. Fr'ohlich-Reiterer EE, Kaspers S, Hofer S et al. Anthropometry, metabolic control, and follow-up in children and adolescents with type 1 diabetes mellitus and biopsy-proven celiac discase. J Pediatr 2011: 158: 589-93.e2.
509. Pham-Short A, Donaghue KC, Ambler G, Chan AK, Craig ME. Coeliac discase in type 1 diabetes from 1990 to 2009: higher incidence in young children after longer diabetes duration. Diabet Med 20I2: 29: e286-e289.
510. Holmes GK. Coeliac disease and Type 1 diabetes mellitus - the case for screening. Diabet Med. 2001 Mar; 18(3):169-77.
511. Pham-Short A, Donaghue KC, Ambler G, et al. Screening for Celiac Disease in Type 1 Diabetes: A Systematic Review. Pediatrics 2015; 136;e170.
512. Sharaiha RZ, Lebwohl B, Reimers L, Bhagat G, Green PH, Neugut AL Increasing incidence of enteropathy-associated T-cell lymphoma in the United States, 1973-2008. Cancer. 2012;118,3786-3792.
513. Simre K, Uibo O, Peet A, et al. Exploring the risk factors for differences in the cumulative incidence of coeliac disease in two neighboring countries: the prospective DIABIMMUNE study. Dig Liver Dis 2016; 48:1296.
514. Picarelli A, Sabbatella L, Di Tola M, Vetrano S, Casale C, Anania MC, Porowska B, Vergari M, Schiaffini R, Gargiulo P. Anti-endomysial antibody of IgGl isotype detection strongly increases the prevalence of coeliac disease in patients affected by type I diabetes mellitus, Clin Exp Immunol. 2005;142:111-115.
515. Kaspers S, Kordonouri O, Schober E, Grabert M, Hauffa BP, Holl RW. Anthropometry, metabolic control, and thyroid autoimmunity in type 1 diabetes with celiac disease: A multicenter survey. J Pediatr. 2004;145;790795.
516. Greco D, Pisciotta M, Gambina F, Maggio F. Celiac disease in subjects
with type 1 diabetes mellitus: a prevalence study in westem Sicily (Italy) Endocrine 2013;43:108-111.
517. Cerutti F, Bruno G, Chiarelli F, et al. Younger age at onset and sex predict celiac disease in children and adolescents with type 1 diabetes: an Italian multicenter study. Diabetes Care 2004; 27:1294.
518. Frohlich-Reiterer EE, Hofer S, Kaspers S, et al. Screening frequency for celiac disease and autoimmune thyroiditis in children and adolescents with type 1 diabetes mellitus--data from a German/Austrian multicentre survey. Pediatr Diabetes 2008; 9-546.
519. Knip M, Simell O. Environmental triggers of type 1 diabetes. Cold Spring Harb Perspect Med. 2012 Jul; 2(7) a007690.
520. Kupfer SS, Jabri B. Pathophysiology of celiac discase.Gastrointest Endose Clin N Am. 2012 Oct; 22(4):639-60.
521. Stryth DJ, Plagnol V, Walker NM, et al, Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 2008; 359:2767.
522. Ziegler AG, Schmid S, Huber D, et al. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 2003; 290:1721.
523. Stene LC, Honcyman MC, Hoffenberg EJ, Haas JE, Sokol RJ, et al. Rotavirus infection frequency and risk of celiac disease autoimmonity in early childhood: a longitudinal study. The Americin Jounal of Gastreenterology. 2006,101: 2333-2340.
524. Yeung WC, Rawlinson WD, Craig ME. Enterovirus infeotion and type 1 dabetes mellitus: systematic review and meta-analysis of observational molecular studies. Bmj. 2011;342.d35.
525. Karell K, Louka AS, Moodie SJ, Ascher H, Clot F, Greco L, Ciclitira PJ, Sollid LM, Partanen J. HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results from the European Genetics Cluster on Celiac Disease. Hum Immunol. 2003;64:469-477.
526. Lavant EH, Carlson JA. A new automated human leukocyte antigen genotyping strategy to identify DR-DQ risk alleles for celiac disease and type I diabetes mellitus. Clin Chem Lab Med. 2009;47:1489-1495.
527. Virtanen SM, Krup M. Nutritional risk predictors of beta cell autoimmunity and type 1 diabetes at a young age. Am J Clin Nutr: 2003;78:1053-1067.
528. Akobeng AK, Ramanan AV, Buchan I, Heller RF, Effect of breast feeding on risk of coeliac disease; a systematic review and meta-analysis of observational studies. Arch Dis Child. 2006;91:39-43.
529. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, et al, The human microbiome project. Nature 2007;449.804-810.
530. Rewers M, Eisenbarth GS Autoimmunity: Celiac cisease in TlDM-the
need to look long term. Nat Rev Endocrinol. 2011 Nov 8, 8(1):7-8.
531. Bakker SF, Tushuizen ME, Stokvis-Brantsma WH, Aanstoot HJ, Winterdijk P, van Setten PA, von Blomberg BM, Mulder CJ, Simsek S. Frequent delay of coeliac disease diagnosis in symptomatic patients with type 1 diabetes mellitus; clinical and genetic characteristics. Eur J Intem Med. 2013 Jul, 24(5).456-60.
532. Dezsofi A, Szebeni B, Hermann CS, Kapitäny A, Veres G, Sipka S, Kömer A, Madácsy L, Korponay-Szabó I, Rajczy K, Arató A. Frequencies of genetic polymorphisms of TLR4 and CD14 and of HLA-DQ genotypes in children with celiac disease, type 1 diabetes mellitus, or both. JPediatr Gastroenterol Nutr. 2008 Sep; 47(3):283-7.
533. Kocleman BP, Lie BA, Undlien DE, Dudbridge F, Thorsby E, de Vries RR, Cucca F, Roep BO, Giphart MJ, Todd JA. Genotype effects and epistasis in type 1 diabetes and HLA-DQ trans dimer associations with disease.Genes Immun. 2004 Aug; 5(5):381-8
534. Hermann R, Turpeinen H, Laine AP, Veijola R, Knip M, Simell O, Sipilā I, Akerblom HK, Ilonen J. HLA DR-DQ-encoded genetic determinants of childhood-onset type 1 diabetes in Finland: an analysis of 622 nuclear families. Tissue Antigens, 2003 Aug; 62(2):162-9.
535. Kumar V, Wijmenga C , Withoff S . From genome-wide association studies to disease mechanisms; celiac disease as a model for autoimmune diseases. Semin Immunopathol. $2012 \mathrm{Jul} ; 34(4): 567-80$.
536. P. Narendran, E. Estella, S. Fourlanos. Immunology of type 1 diabetes. QJM: An Intemational Journal of Medicine, Volume 98, Issue 8, August 2005, Pages 547-556, https://doi.org/10.1093/qimed/hci088
537. Holmes GK. Potential and latent coeliac disease. Eur J Gastroenterol Hepatol. 2001;13:105]-1060.
538. Mackinder M, Allison G, Svolos V, Buchanan E, Johnston A, Cardigan T, Laird N, Duncan H, Fraser K, Edwards CA, et al. Nutritional status, growth and disease management in children with single and dual diagnosis of type 1 diabetes mellitus and coeliac disease. BMC Gastroenterol. 2014;14:99
539. Amin R, Murphy N, Edge J, Ahmed ML, Acerini CL, et al. A longitudinal study of the effects of a gluten-free diet on glycemic control and weight gain in subjects with type 1 diabetes and celiac disease. Diabetes Care. 2002;25:1117-1122.
540. Mohn A, Cerruto M, Iafusco D, Prisco F, Tumini S, Stoppoloni O, Chiarelli F. Celiac disease in children and adolescents with type I diabetes: importance of hypoglycemia. J Pediatr Gattroenterol Nutr. 2001;32:37-40.
541. Collin P, Kaukinen K, Valimăki M, Salmii J. Endocrinological disorders
and celiac disease. Endocr Rev. 2002;23:464-483.
542. Iafusco D, Rea F, Prisco F. Hypoglycemia and reduction of the insulin requirement as a sign of celiac disease in children with IDDM. Diabetes Care 1998; 21:1379.
543. Simmons JH. Klingensmith GJ, McFann K. Rewers M, Taylor J. Emery LM, Taki I, Vanyi S, Liu E, Hoffenberg EJ. Impact of celiac autoimmunity on children with type 1 diabetes. J Pediatr. 2007:150:461-466.
544. Simmons KM, McFann K, Taki I, et al. Reduced Bone Mineral Density Is Associated with Celiac Disease Autoimmunity in Children with Type 1 Diabetes. J Pediatr 2016; 169:44.
545. Cannarca ME, Mozzillo E, Nugnes R, Zito E, Falco M, Fattorusso V, Mobilia S, Buono P, Valcrio G, Troncone R, et al. Celiac discasc in type 1 diabetes mellitus. Ital J Pediatr. 2012;38:10.
546. Freemark M, Levitsky LL. Screering for celiac disease in children with type 1 diabetes: two views of the controversy. Diabetes Care. 2003 Jur; 26(6):1932-9.
547. Cataldo F, Marino V, Bottaro G, Greco P, Ventura A. Celiac disease and selectiveimmunoglobulin A deficiency, J Pediatr 1997: 131: 306-308.
548. Leffler DA, Schuppan D. Update on serologic testing in celiac disease. Am J Castroenterol. 2010; 105:2520-2524.
549. Poner JA, MacKenzie K, Darlow B, Day AS. Looking for coeliac disease in children with type 1 diabetes mellitis. J Paediatr Child Health. 2014;50:811-816.
550. Grant RW, Kirkman MS. Trends in the evidence level for the American Diabetes Association's "Standards of Medical Care in Diabetes" from 2005 to 2014. Diabetes Care, 2015 Jan; 38(1):6-8.
551. Sud S, Marcon M, Assor E, Palmert MR, Daneman D, Mahmud FH. Celiac discase and pediatric type 1 diabetes; diagnostic and treatment dilemmas. Int J Pediatr Endecrinol. 2010;2010:161285.
552. International Diabetes Federation. The global IDFISPAD guideline for diabetes in childhood and adolescence. Available from: http://wwwidf.org/ global-idfispad-guideline-diabetes-childhood-and-adolescence.
553. Husby S, Koletzko S, Korponay-Szabo IR, Mearin ML, Phillips A, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr. 2012;54:136-160.
554. Rubio-Tapia A, Hill ID, Kelly CP, Calderwood AH, Murray JA, Amencan College of Gastroenterology. ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol. 2013 May. 108(5):656-76; quiz 677.
555. Kordonouri O, Maguire AM, Knip M. Schober E, Lonini R, et al. ISPAD Clinical Practice Consensus Guidelines 2006-2007. Other complications and associated conditions. Pediatr Diabetes. 2007; 8:171-176
556. Rostom A, Murray JA, Kagnoff MF. American Clastroenterological Association (AGA) Institute technical review on the diagnosis and management of celiac disease. Gastronterology. 2006;131:1981-2002
557. Chand N, Mihas AA. Celiac disease: current concepts in diagnosis and treatment. J Clin Gastrocterol. 2006,40.3-14.
558. Waisbourd-Zimman O, Hojsak I, Rosenbach Y, Mozer-Glassberg Y, Shalitin S , et al. Spontaneous normalization of anti-tissue transglutaminase antibody levels is common in children with type 1 diabetes mellitus. Dig Dis Sci. 2012;57:1314-1320.
559. Hansen D, Brock-Jacobsen B, Lund E, Bjom C, Hansen LP, Nielsen C, Fenger C, Lillevang ST, Husby S. Clinical bencfit of a gluten-free diet in type 1 diabetic children with screening-detected celiac disease: a popula-tion-based screening study with 2 years' follow-up. Diabetes Care. 2006;29:2452-2456
560. Abid N, MoGlone O, Cardwell C, et al. Clinical and metabolic effects of gluten free diet in children with type 1 diabetes and coeliac disease. Pediatr Diabetes 2011; 12:322.
561. Margoni D, Chouliaras G, Duscas G et al. Bone health in children with celiac disease assessed by dual x -ray absorptiometry: effect of gluten-free diet and predictive value of serum biochemical indices. J Pediatr Gastroenterol Nutr 2012: 54: 680-684.
562. Rubio-Tapia A, Kyle RA, Kaplan EL, Johnson DR, Page W, Erdtmann F,Brantner TL, Kim WR, Phelps TK, Lahr BD, Zinsmeister AR, Melton LJ,Murray JA: Increased prevalence and mortality in undiagnosed celiacdisease. Gastroenterology 2009, 137(1):88-93, 0036-5521.
563. Amin R, Murphy N, Edge J, Ahmed ML, Acerini CL, et al. A longitudinal study of the effects of a gluten-free diet on glycemic control and weight gain in subjects with type 1 diabetes and celiac disease. Diabetes Care. 2002;25:1117-1122.
564. Sud S, Marcon M, Assor E, et al. Quality of life in children with diabetes and celiac disease: minimal impact of the 'double diagnosis'. Pediatr Diabetes 2012; 13:163.
565. Ten S, New M, Maclaren N. Clinical review 130: Addison's disease 2001. J Clin Endocrinol Metab. 2001 Jul; 86(7):2909-22.
566. Fichna M, Fichna P, Gryczynska M, Walkowiak J, Zurawek M, Sowinski. Screening for associated autoimmune disorders in Polish patients with

Addison's disease. Endocrine. 2010 Apr, 37(2):349-60.
567. Peterson P, Salmi H , Hy"oty H et al. Steroid 21 -hydroxylase autoantibodies in insulin-dependent diabetes mellitus. Childhood Diabetes in Finland (DiMe) Study Group. Clin Immunol Immunopathol 1997: 82: 37-42
568. De Block CE, De Leeuw IH, Vertommen JJ et al. Beta-cell, thyroid, gastric. adrenal and coeliac autoimmunity and HLA-DQ types in type 1 diabetes. Clin Exp Immunol 2001: 126: 236-241.
569. Kakleas K, Soldatou A, Karachaliou F, Karavanaki K. Endocrine and immunogenetic testing in individuals with type 1 diabetes and 21 -hydroxylase autoantibodies. Autoimmun Rev. 2015 Sep, 14(9).781-97.
570. Barker JM, Ide A, Hostetler C, Yu L, Miao D, Fain PR, Eisenbarth GS, Gottlieb PA. Endocrine and immunogenetic testing in individuals with type 1 diabetes and 21-hydroxylase autoantibodies: Addison's disease in a highrisk population. J Clin Endocrinol Metab. 2005 Jan; 90(1):128-34.
571. Thomas, JB.; Petrovsky, N. \& Ambler JR. (2004). Addison's disease presenting in four adolescents with type 1 diabetes. Pediatr Diab Vol. 5, pp. 207-211
572. Barker JM, YuJ, Yu L, Wang J, Miao D, Bao F, Hoffenberg E, Nelson JC, Gottlieb PA, Rewers M, Eisenbarth GS Autoantibody "subspecificity" in type 1 diabetes: risk for organ-specific autoimmunity clusters in distinct groups. Diabetes Care. $2005 \mathrm{Apr}, 28(4)$:850-5.
573. Baker P, Fain P, KahlesHet al. Genetio determinants of 21 -hydroxylase autoantibodies amongst patients of the type 1 diabetes Genetics Consortium. J Clin Endocrinol Metab 2012: 97: E1573-E1578.
574. Meyer G, Neumann K, Badenhoop K, Linder R. Increasing prevalence of Addison's disease in German females: health insurance data 2008-2012. Eur J Endocrinol. 2014 Mar; 170(3):367-73.
575. Betterle C, Morlin L. Autoimmune Addison's disease. Endocr Dev. 2011; 200:161-72.
576. Betterle, C; Volpato, M.; Rees Smith, B; Furmaniak, J.; Chen, S; Zanchetta, R.; Greggio, N.; Pediri, B.; Boscaro, M. \& Presotto F. (1997). Adrenal cortex and steroid 21 -hydroxylase autoantibodies in children with or-gan-specific autoimmune diseases; markers of high progression to clinical Addison's disease. J Clin Endocrinol Metab, Vol. 82, No.3, pp $939-942$
577. Brewer, KW.; Parziale, WS, \& Eisenbarth GS. (1997). Screening patients with insulin dependent diabetes mellitus for adrenal insufficiency. N Engl JMed Vol. 237, pag. 202
578. Marks SD, Girgis R, Couch RM.Screening for adrenal antibodies in children with type 1 diabetes and autoimmone thyroid disease. Diabetes Care.

2003 Nov, 26 (11):3187-8.
579. McAulay V, Frier BM. Addison's disease in type 1 diabetes presenting with recurrent hypoglycaemia. Postgrad Med J. 2000 Apr, 76(894):230-2.
580. Handa S, Dogra S. Epidemiology of childhood vitiligo: a study of 625 patients from north India. Pediatr Dermatol 2003: 20: 207-210.
581. Taieb A, Picardo M, VETF Members. The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force. Pigment Cell Res. $2007 \mathrm{Feb}, 20$ (1).27-35.
582. Kemp EH, Gavalas NG, Gawkrodger DJ, Weetman AP. Autoantibody responses to melanocytes in the depigmenting skin disease vitiligo. Autoimmun Rev. 2007 Jan; 6 (3):138-42.
583. Van Hattem S, Bootsma AH , Thio HB. Skin manifestations of diabetes. Cleve Clin I Med 2008: 75: 772, 774, 776-777.
584. Frisoli ML., Essien K., Harris J.E. Vitiligo: Mechanisms of Pathogenesis and Treatment Annu. Rev. Immuriol 2020,38:621-648. doi: 10.1146/annurev-inmurnol-100919-023531.
585. Spritz R.A, Andersen G.H.L. Genetics of vitiligo. Dermatol, Clin. 2017;35:245-255. doi: 10.1016/j, det: 2016.11.013.
586. LiZ., Ren J., Niu X, XuQ., Wang X., Liu Y, Xiao S. Meta-analysis of the association between vitiligo and human leukocyte antigen- A . BioMed. Res, Int. 2016:1-13. doi: 10.1155/2016/5412806.
587. Auburger G, Gispert S, Lahut S, Omĭ O, Damrath E, Heek M, Başak N. $2 q 24$ locls association with type 1 diabetes: SH2B3 or ATXN2? World J Diabetes. $2014 \mathrm{Jun} 15 ; 5(3): 316-27$.
588. Kemp E. H., Waterman E. A., Weetman A. P. Autoimmune aspects of vitiligo. Autoimmmity. 2001;34(1).65-77.
589. Taher ZA, Lauzon G, Maguiness S, Dytoc MT. Analysis of interleukin-10 levels in lesions of vitiligo following treatment with topical tacrolimus. Br J Dermatol. 2009 Sep; 161(3):654-9.
590. Shaikh SB, Haji IM, Doddamani P, Rahman M. A Study of Autoimmune Polyglandular Syndrome (APS) in Patients with Typel Diabetes Mellitus (T1DM) Followed Up at a Teritiary Care Hospital. J Clin Diagn Res, 2014 Feb; 8(2):70-2.
591. Gawkrodger DJ. Vitiligo, what general physicians need to know. Clin Med (Lond) 2009 Oct; 9(5);408-9.
592. Wolff K., Goldsmith L. A., Katz S. I., Gilchrest B. A., Paller A. S., Leffell D. J. Fitzpatrick's Dermatology in General Medicine.7th. Vol. 1, New York, NY, USA: McGraw-Hill; 2007.
593. Lotti T., Gori A. Zanieri F., Colucci R., Moretti S. Vitiligo: new and
emerging treatments. Dermatologic Therapy. 2008,21(2):110-117. doi: 10.1111/j. $1529-8019.2008,00178 \mathrm{x}$
594. Szezurko O., Boon H. S. A systematic review of natural health product treatment for vitiligo. BMC Dermatology. 2008,8, article 2doi: 10.1186/1471-5945-8-2.
595. Bolognia J. L., Jorizzo J. L., Rapini R. Dermatology. 2nd. Vol. 1. Philadelphia, Pa, USA: Mosby/Elsevier, 2008.
596. Forschner T., Buchholtz S., Stockfleth E. Current state of vitiligo therapy-evidence-based analysis of the literature. Joumal of the German Society of Dermatology. 2007.5(6):467-475. doi. $10.1111 / \mathrm{j} .1610$ 0387.2007 .06280 x .
597. Grimes P. E. New insights and new therapies in vitiligo. The Joumal of the American Medical Association. 2005;293(6)-730-735. doi: 10.1001/jama,293.6.730,
598. Saleh HM, Abdel Fattah NS, Hanza HT. Evaluation of senum 25 -hydroxyvitamin D levels in vitiligo patients with and without autoimmune diseases. Photodermatol Photoimmunol Photomed 201 3: 29: 34-40.
599. D'Elios, MM ; Bergman, MP.; Amedei, A.; Appelmelk, BJ. \& Del Prete G, (2004). Helicobacter pylori and gastric autoimmunity. Microbes Infect, Vol.6, No.15, pp. 1395-401
600. De Block, CE.; De Leeuw, IH. \& Van Gaal, LF. (2008). Autoimmune gastritis in type I diabetes: a clinically oriented review. J Clin Endoorinol Metab, Vol.93, No.2, pp. 363-371.
601. Neufeld M, Maclaren N, Blizzard R. Autoimmune polyglandular syndromes. Pediatr Ann. 1980 Apr ; 9(4):154-62.
602. Eisenbarth GS, Gottlieb PA. Autoimmune polyendocrine syndromes.N Engl J Med 2004 May 13; 350(20):2068-79.
603. Ben-Skowronek I, Michalczyk A, Piekarski R, Wysocka-Łukasik B, Banecka B. Type III Polyglandular Autoimmune Syndromes in children with type 1 diabetes mellitus. Ann Agric Environ Med. 2013; 20(1):140-6.
604. Grzywa M. Type 1 T1DM a relevant-significant component polyglandular autoinmune. Diabetologia Polska. 2005;12:271-274.
605. Michels AW, Gottlieb PA. Autoimmune polyglandular syndromes. Nat Rev Endocrinol 2010; 6: 270-277.
606. Oda JM, Hirata BK, Guembarovski RL, Watanabe MA. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases. I Genet 2013: 92: 163-171.
607. Verbsky JW, Chatila TA. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders, an evolving web
of heritable autoimmune diseases. Curr Opin Pediatr 2013; 25:708.
608. De Silva BD, Schofield OM, Walker JD. The prevalence of necrobiosis lipoidica diabeticorum in children with type 1 diabetes. Br J Dermatol 1999: 141: 593-594.
609. Reid SD, Ladizinski B, Lee K. Baibergenova A, Alavi A. Update on necrobiosis lipcidica: a review of etiology, diagnosis, and treatment options. J Am Acad Dermatol 2013: 69: 783-791.
610. Stanescu DE, Lord K, Lipman TH. The epidemiology of type 1 diabetes in childrent. Endocrinol Metab Clin North Am. 2012 Dec;41(4):679-94
611. EURODIAB ACE Study Group. Variation and trends in incidence of childhood diabetes in Europe. Lancet 2000;355(9207):873-6
612. Choleau C, Maitre J, Filipovic Pierucci A, Elic C, Barat P, Bertrand AM, de Kerdanet M, Letallec C, Levy-Marchal C, Nicolino M, Tubiana-Rufi N, Cahané M, Robert J; AJD Study Group, Ketoacidosis at diagnosis of type 1 diabetes in French children and adolescents. Diabetes Metab. 2014 Apr;40(2):137-42
613. Dahlquist G, Gustavsson KH, Holmgren G, Hägglof B, Larsson Y, Nilsson KO, Samuelsson G, Sterky G, Thalme B, Wall S. The incidence of diabetes mellitus in Swedish children 0-14 years of age. A prospective study 1977 1980. Acta Paediatr Scand. 1982 Jan; 71(1):7-14
614. Lawrence JM, Divers J, Isom S, Saydah S, Imperatore G, Pihoker C, Marcovina SM, Mayer-Davis EJ, Hamman RF, Dolan L, Dabelea D, Pettitt DJ, Liese AD, SEARCH for Diabetes in Youth Study Group. Trends in Prevalence of Type 1 and Type 2 Diabetes in Children and Adolescents in the US, 2001-2017. JAMA. 2021 Aug 24;326(8):717-727
615. Fazeli Farsani S, Souverein PC, van der Vorst MM, Knibbe CA, Henings RM, de Boer A, Mantel-Teeuwisse AK. Increasing trends in the incidence and prevalence rates of type 1 diabetes among children and adolescents in the Netherlands. Pediatr Diabetes. 2016 Feb;17(1):44-52
616. Divers J, Mayer-Davis EJ, Lawrence JM, Isom S, Dabelea D, Dolan L, Imperatore G, Marcovina S, Pettitt DJ, Pihoker C, Harmman RF, Saydah S, Wagenknecht LE. Trends in Incidence of Type 1 and Type 2 Diabetes Among Youths - Selected Counties and Indian Reservations, United States, 2002-2015. MMWR Morb Mortal Wkly Rep. 2020 Feb 14;69(6):161-165
617. Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Hosseini Fard H, Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world a systematic review and meta-analysis. Health Promot Perspect. 2020 Mar 30,10(2):98-115
618. Tzaneva V, Iotova V, Yotov Y. Significant urban/rural differences in the
incidence of type 1 (insulin-dependent) diabetes mellitus among Bulgarian children (1982-1998). Pediatr Diabetes. 2001 Sep, 2(3):103-8
619. Ostman J, Lónnberg G, Amqvist HJ, Blchmé G, Bolinder J, Ekbom Schnell A, Eriksson JW, Gudbjörnsdottir S, Sundkvist G, Nyström L. Gender differences and temporal variation in the incidence of type 1 diabetes; results of 8012 cases in the nationwide Diabetes Incidence Study in Sweden 1983 2002. J Intem Med. 2008 Apr,263(4):386-94
620. Waugh Nr. Insulin-dependent diabetes in a Scottish region: incidence and urbar/rural differences. J Epidemiol Community Health 1986: 40: 240-243
621. Patterson C, Carson Dj, Hadden Dr. Epidemiology of childhood IDDM in Northern Ireland 1989-1994: low incidence in areas with highest population density and most houschold crowding. Diabetologia 1996: 39: 10631069
622. du Prel JB, Icks A, Grabert M, Holl RW, Giani G, Rosenbauer J. Socioeconomic conditions and type 1 diabetes in childhood in North Rhine-Westphalia, Germany. Diabetologia: 2007 Apr;50(4); 720-8
623. Thomas W, Birgit R, Edith S; Austrian Diabetes Incidence Study Group, Changing geographical distribution of diabetes mellitus type 1 incidence in Austrian children 1989--2005. Eur J Epidemiol. 2008;23(3):213-8
624. Butalia S, Kaplan GG, Khokhar B, Haubrich S, Rabi DM. The Challenges of Identifying Environmental Determinants of Type 1 Diabetes: In Search of the Holy Gmil. Diabetes Metab Syndr Obes. 2020 Dec 9;13:4885-4895
625. Weires MB, Tausch B, Haug PJ, Edwards CQ, Wetter T, Cannon-Albright LA. Familiality of diabetes mellitus. Exp Clin Endocrinol Diabetes 2007;115:634-640
626. Harjutsalo V, Reunanen A, Tuomilehto J. Differential transmission of type 1 diabetes from diabetic fathers and mothers to their offispring. Diabetes 2006;55:1517-1524
627. Allen C, Palta M, D'Alessio DJ. Risk of diabetes in siblings and other relatives of IDDM subjects. Diabetes 1991;40:831-836
628. Lebenthal Y, de Vries L, Phillip M, Lazar L. Familial type 1 diabetes mellitus - gender distribution and age at onset of diabetes distinguish between parent-offspring and sib-pair subgroups. Pediatr Diabetes 2010;11:403-411
629. Parkkola A, Härkōnen T, Ryhānen SJ, Donen J, Knip M; Finnish Pediatric Diabetes Register. Extended family history of type 1 diabetes and phenotype and genotype of newly diagnosed children. Diabetes Care. 2013 Feb;36(2);348-54
630. Alhonen S, Korhonen S, Tapanainen P, Krip M, Veijola R. Extended family history of diabetes and autoimmune diseases in children with and
without type 1 diabetes. Diabetes Care 2011:34:115-117
631. O'Leary LA, Dorman IS, LaPorte RE, et al. Familial and sporadic insulindependent diabetes: evidence for heterogeneous etiologies? Diabetes Res Clin Pract 1991;14:183-190
632. Redondo MJ. Eisenbarth GS. Genetic control of autoimmunity in type 1 diabetes and associated disorders. Diabetologia 2002;45:605-622
633. Los E, Wilt AS. Diabetes Mellitus Type 1 In Children. (Updated 2021 Aug 5). In: StatPearls (Internet). Treasure Island (FL): StatPearls Publishing; 2022 Jan- E disponueshme nw: https://www.ncbi.nlm.rih.gov/books /NBK 441918 /
634. Cosgrove M. Do stressful life events cause type 1 diabetes? Occupational Medicine, 2004;54:250-254
635. Filippi CM, von Herrath MG. Viral trigger for type 1 diabetes: pros and cons. Diabetes 2008;57(11):2863-2871
636. Sadeharju K, Lönnrot M, Kimpimāki T, Savola K, Erkkilā S, Kalliokoski T, Savolainen P, Koskela P, Ilonen J, Simell O, Knip M, Hyöty H. Enterovirus antibody levels during the first two years of life in prediabetic auto-antibody-positive children. Diabetologia. 2001 Jul;44(7):818-23
637. Ylipaasto P, Klingel K, Lindberg AM, Otonkooki T, Kandolf R, Hovi T, Roivainen M. Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia. 2004 Feb, 47 (2): 225-39
638. Hagglof B, Blom L, Dahlquist G, Lönnberg G, Sahlin B. The Swedish childhood diabetes study: indications of severe psychological stress as a risk factor for type 1 (insulin-dependent) diabetes mellitus in childhood. Diabetologia. 1991 Aug; $34(8): 579-83$
639. Thernlund GM, Dahlquist G, Harsson K, Ivarsson SA, Ludvigsson J, Sjöblad S, Hägglof B. Psychological stress and the onset of IDDM in children. Diabetes Care. 1995 Oct;18(10):1323-9
640. Usher-Smith JA, Thompson MJ, Zhu H, Sharp SJ, Walter FM. The pathway to diagnosis of type 1 diabetes in childrent a questicnnaire study. BMJ Open. 2015;5(3):e006470
641. Al-Fifi SH. The relation of age to the severity of Type I diabetes in children, J Family Community Med. 2010;17(2):87-90
642. Kamal Alanani NM, Alsulaimani AA. Epidemiological pattern of newly diagnosed children with type 1 diabetes mellitus, Taif, Saudi Arabia. Scientific WorldJournal. 2013 Oct 9;2013:421569
643. Peng W, Yuan J, Chiavaroli V, Dong G, Huang K, Wu W, Ullah R, Jin B, Lin H, Derraik JGB, Fu J. 10-Year Incidence of Diabetic Ketoacidosis at

Type 1 Diabetes Diagnosis in Children Aged Less Than 16 Years From a Large Regional Center (Hangzhou, China). Front Endocrinol (Lausanne), 2021 Apr 27;12:653519
644. Olak-Bialon B, Deja G, Jarosz-Chobot P, Buczkowska EO. Ocena wystepowania i analiza wybranych czynników ryzyka kwasicy ketonowej w momencie ujawnienia cukrzycy typu 1 (The occurrence and analysis of chosen risk factors of DKA among children with new onset of DMT1). Pediatr Endocrinol Diabetes Metab. 2007;13(2).85-90. Polish
645. Pietrzak I, Mianowska B, Zmyslowska A, Fendler W, Myynarski W, Szadkowska A. Epidemiologia i obraz kliniczny cukrz̧cowej kwasicy ketonowej u dzreci i młolzieży chorujacej na cukrzycẹ typu 1 (Epidemiology and clinical course of diabetic ketoacidosis in children and adolescents with type 1 diabetes mellitus). Pediatr Endocrinol Diabetes Metab. 2013;19(4):137-42. Polish
646. Wojcik M, Sudacka M, Wasyl B, Ciechanowska M, Nazim J, Stelmach M, Starzyk JB. Incidence of type 1 diabetes mellitus during 26 years of observation and prevalence of diabetic ketoacidosis in the later years. Eur J Pediatr 2015 Oct; 174(10):1319-24
647. Dabelea D, Rewers A, Stafford JM, et al. (a) Trends in the prevalence of ketoacidosis at diabetes diagnosis: the SEARCH for diabetes in youth study. Pediatrics. 2014;133(4) e938-e945
648. Praveen PA, Hockett CW, Ong TC, Amutha A, Isom SP, Jensen ET, Mohan V, Dabelea DA, DAgostino RB Jr, Hamman RF, Mayer-Davis EJ, Lawrence JM, Dolan LM, Kahn MG, Madhu SV, Tandon N. Diabetic ketoacidosis at diagnosis among youth with type 1 and type 2 diabetes: Results from SEARCH (United States) and YDR (India) registries. Pediatr Diabetes. 2021 Feb;22(1):40-46
649. Fritsch M, Schober E, Rami-Merhar B, Hofer S, Fröhlich-Reiterer E, Waldhoer T, Austrian Diabetes Incidence Study Group. Diabetic ketoacidosis at diagnosis in Austrian children: a population-based analysis, 19892011. J Pediatr. 2013 Nov;163(5):1484-8.el
650. Fazeli Farsani S, Brodovicz K, Soleymanlou N, Marquard J, Wissinger E, Maiese BA. Incidence and prevalence of diabetic ketoacidosis (DKA) among adults with type 1 diabetes mellitus (TID): a systematic literature review, BMJ Open 2017 Aug 1;7(7):e016587. Erratum in: BMJ Oper. 2017 Sep 1;7(8):e016587corrl
651. Vicinanza A, Messaaoui A, Tenoutasse S, Dorchy H. Diabetic ketoacidosis in children newly diagnosed with type I diabetes mellitus: Role of demographic, clinical, and biochemical features along with genetic and
immunological markers as risk factors. A 20 -year experience in a tertiary Belgian center. Pediatr Diabetes. 2019 Aug, 20(5):584-593
652. Peng W, Yuan J, Chiavaroli V, Dong G, Huang K, Wu W, Ullah R, Jin B, Lin H, Derraik JGB, Fu J. 10-Year Incidence of Diabetic Ketoacidosis at Type 1 Diabetes Diagnosis in Children Aged Less Than 16 Years From a Large Regional Center (Hangzhou, China). Front Endocrinol (Lausanne). 2021 Apr 27;12:653519
653. Habib HS. Frequency and clinical characteristics of ketoacidosis at onset of childhood type 1 diabetes mellitus in Northwest Saudi Arabia. Saudi Med J. 2005 Dec;26(12):1936-9
654. Pietrzak I, Mianowska B, Znnyslowska A, Fendler W, Mynarski W, Szadkowska A. Epidemiologia i obraz kliniczny cukzzycowej kwasicy ketonowej u dzieci i mbodzieży chorujacej na cukrzycę typu 1 (Epidemiology and clinical course of diabetic ketoacidosis in children and adolescents with type 1 diabetes mellitus). Pediatr Endocrinol Diabetes Metab. 2013;19(4):137-42. Polish
655. Patterson C, Dahlquist G, Gylurùs E, Green A, Soltész G, EURODIAB ACEStudy Group, Incidence trends for childhood type 1 diabetes in Europe dur-ing 1989-2003 and predicted new cases 2005-20: a multicentre prospectiveregistration study. Lancet 2009;373:2027-33)
656. Onyiriuka AN, Ifebi E. Ketoacidosis at diagnosis of type 1 diabetes in children and adolescents: frequency and clinical characteristics. J Diabetes Metab Disord. 2013 Dec 19;12(1);47
657. Weng J, Zhou Z, Guo L, Zhu D, Ji L, Luo X, et al. Incidence of type 1 diabetes in China, 2010-13: population based study. BMJ (2018) 360;j5295
658. Jawaid A, Sohaila A, Mohammad N, Rabbani U. Frequency, clinical characteristics, biochemical findings and outcomes of DKA at the onset of type1 DM in young children and adolescents living in a developing country - an experience from a pediatric emergency department. J Pediatr Endocrinol Metab. 2019 Feb 25;32(2):115-119
659. Li L, Andrews EB, Li X, Doder Z, Zalmover E, Sharma K, Oliverra JH, Juhaeri J, WuC. Incidence of diabetic ketoacidosis and its trends in patients with type 1 diabetes mellitus identified using a U.S. claims database, 20072019. J Diabetes Complications. 2021 Jul;35(7):107932
660. Tonolo G. Sex-Gender Awareness in Diabetes. Diabetology, 2021; 2(2):117-122
661. Chumięcki M, Prokopowicz Z, Deja R, Jarosz-Chobot P, Ocena stamu klinicznego i czestości wysteppowania kwasicy ketonowej u dzieci ze swiezo rozpoznaną cukrzycą typu 1 (Frequency and clinical manifestation of
diabetic ketoacidosis in children with newly diagnosed type I diabetes). Pediatr Endocrinol Diabetes Metab, 2013;19(4):143-7. Polish
662. Derraik JGB, Cutfield WS, Maessen SE, Hofman PL, Kenealy T, Gunn AJ, et al. A brief campaign to prevent diabetic ketoacidosis in children newly diagnosed with type 1 diabetes mellitus: The NO-DKA Study, Pediatr Diabetes (2018) 19:1257-62)
663. Holder M, Ehehalt S. Significant reduction of ketoacidosis at diabetes onset in children and adolescents with type 1 diabetes-The Stuitgart Diabetes Awareness Campaign, Germany. Pediatr Diabetes (2020) 21:1227-31
664. King BR, Howard NJ, Verge CF, Jack MM, Govind N, Jameson K, et al. A diabetes awareness campaign prevents diabetic ketoacidosis in children at their initial presentation with type 1 diabetes. Pediatr Diabetes (2012) 13:647-51
665. Vanelli M, Chiari G, Ghizzoni L, Costi G, Giacalone T, Chiarelli F, Effectiveness of a prevention program for diabetic ketcacidosis in children. An 8 -ycar study in schools and private practices. Diabetes Care (1999) 22:7-9
666. Duca LM, Reboussin BA, Pihoker C, Imperatore G, Saydah S, Mayer-Davis E, Rewers A, Dabelea D. Diabetic ketoacidosis at diagnosis of type 1 diabetes and glycemic control over time: The SEARCH for diabetes in youth study. Pediatr Diabetes. 2019 Mar; 20(2):172-179
667. Fredheim S, Johannesen J, Johansen A, Lyngsee L, Rida H, Andersen ML, Lauridsen MH, Hertz B, Birkebak NH, Olsen B, Mortensen HB, Svensson J; Danish Society for Diabetes in Childhood and Adolescence. Diabetic ketoacidosis at the onset of type 1 diabetes is associated with future HbAlc levels. Diabetologia. 2013 May;56(5):995-1003
668. Iovane B, Cangelosi AM, Bonaccini L, Di Mauro D, Scarabello C, Panigari A. Tiri A, Mastrorilli C, Fainardi V, Dodi I, Vanelli M. Diabetic ketoacidosis at the onset of Type 1 diabetes in young children Is it time to launch a tailored campaign for DKA prevention in children <5 years? Acta Biomed. 2018 Jan 8;89(1):67-71
669. Bui H, To T, Stein R, Fung K, Daneman D. Is diabetic ketoacidosis atdisease onset a result of missed diagnosis? J Pediatr 2010;156:472-7
670. Szypowska, A. \& Skorka, A. The risk factors of ketoacidosis in children with newly diagnosed type 1 diabetes mellitus. Pediatr. Diabetes 2011;12, 302-306
671. Catherine Pihoker,, Lisa K. Gilliam, Christiane S. Hampe", Ake Lemmark. Autcantibodies in Diabetes,Diabetes 2005;54(suppl_2):S52-S61, https://doi.org/10.2337/diabetes.54. suppl_2.S52
672. Jonsdottir B, Andersson C, Carlsson A, Delli A, Forsander G, Ludvigsson
J. Marcus C, Samuelsson U, Ortqvist E, Lemmark A, Ivarsson SA, Larsson HE; Better Diabetes Diagnosis (BDD) study group. Thyroid autoimmunity in relation to islet autoantibodies and HLA-DQ genotype in newly diagnosed type 1 diabetes in children and adolescents. Diabetologia. 2013 Ang:56(8):1735-42.
673. Rodrigues R, Gonçalves FT, Jorge PT. Prevalence of thyroid dysfunction and antithyroid antibodies in type 1 diabetic mellitus patients and their firstdegree relatives. Arq Bras Endocrinol Metabol, 2008 Aug;52(6):985-93.
674. Karavanaki K, Kakleas K, Paschali E, Kefalas N, Konstantopoulos I, Petrou V, Kanarion M, Karayianni C. Screening for associated autoimmunity in children and adolescents with type 1 diabetes mellitus (T1DM). Horm Res. 2009;71(4):201-6
675. Alves C, Santos LS, Toralles MB. Association of type 1 diabetes mellitus and autoimmune disorders in Brazilian children and adoleseents. Indian J Endocrinol Metab. 2016 May-Jur; 20(3):381-6.
676. Warncke K, Frōhlich-Reiterer EE, Thon A, Hofer SE, Wiemann D, Holl RW; DPV Initiative of the German Working Group for Pediatric Diabetology; German BMBF Competence Network for Diabetes Mellitus. Polyendocrinopathy in children, adolescents, and young adults with type 1 diabetes: a multicenter analysis of 28,671 patients from the German'Austrian DPV-Wiss database. Diabetes Care. 2010 Sep;33(9) 2010-2.

[^0]: ${ }^{1}$ Vetém midis atyre me histori familjare pozitive per DMTI ($n=24$). Cdo mosperputhie me keté numk̀r vjen per shkak te mungeses sé informacionit
 ${ }^{2}$ Vetém midis atyre me histeri farniljare pocitive per DMT2 ($n=27$). Cdo mospérputhje me kété muér vjen petr shkak té mungeses sé informacionit

[^1]: ${ }^{1}$ Vlerae domethénies satistikore (vlera eP-sé) sipas testit hi katror (testi Fisher's exact per tabelat 2×2),
 ${ }^{2}$ Numri absolut dhe perqindja sipas kolonave (né kllapa).

[^2]: ${ }^{4}$ Vlera e domethenies statistikore (vlera e P-st) sipas testit hi katror (testi Fisher's exact per tabelat 2×2).
 ${ }^{2}$ Nunri absolut dhe perqindja sipas kolonave (ne kllapa).

[^3]: ${ }^{1}$ Vlcra e P -sé sipas testit jo-parametrik Mam-Ehimey U test per dy mostra te pavarura.
 ${ }^{2}$ Vlera e P-sé sipas testit jo-parametrik Kruskal Ealls test pèr k mostra té pavarura.

[^4]: ${ }^{1}$ Vkera e domethénies statistikcee sipas testit hi katror (testi Fisher's Exact Test pér tabelat 2×2)
 ${ }^{2}$ Nurni absolut dhe perqindia sipas kolonave (né kllapa). Cdo mosperputhje me keté numér yjen per sakak té mungests sé informacionit.

[^5]: ${ }^{1}$ Vlera e domethénies statistikcee sipas testit Fisher's Exact Test.
 ${ }^{2}$ Numri absolut dhe perqindja sipas kolonave (ne kllapa). Cdo mospeqputhje me kete namer vjen per sakak tê mungests sé informacionit

[^6]: ${ }^{1}$ Vhera e domethenies statistikcee sipas testit Fisher's Exact Test.
 ${ }^{2}$ Numri abbolut dhe perqindja sipas kolonave (ne kllapa). Cdo mosperputhje me kete numê yjen pêr sakak té mungests sé informacionit.

[^7]: ${ }^{1}$ Vlera e domethenies statistikoee (vilera e P-se) sipas testit hi katror.
 ${ }^{2}$ Nunri absolut dhe perqindja sipas kolonave (né kllapa).

[^8]: ${ }^{1}$ Nunri absolut dhe pérqiindja sipas kolonave (né kllaga).
 ${ }^{2}$ Vlera e domethönies statistikore sipas testit hi katror (testi Fisher's Exact Test pér tabelat 2×2)
 ${ }^{3}$ Vlera e domethénies statistikore sipas testit té studentit per dy mostra té pavarura.
 ${ }^{4}$ Vlera e dornethēnies statistikore sipas testit té sudentit pêr dy mostra té pavanura.

[^9]: ${ }^{1}$ Viera e domethenies statistikore sipas testit Fisher's Exact Test.
 ${ }^{2}$ Nunri absolut dhe perqindja sipas kolonave (ne kllapa).
 ${ }^{3}$ Vlera e domethenies statistikoee sipas testit jo parametrik Mann-Whitney par dy mostra te pavanura.
 ${ }^{4}$ Vlera mesatare \pm deviacioni standard.

[^10]: ${ }^{4}$ Vlera mesatare \pm deviacioni standard.
 ${ }^{2}$ Vlera e domethenies statistikere sipas testit jo parametrik Mann-Whitney per dy mostra te pavarura.

[^11]: ${ }^{1}$ Vlera mesatare \pm deviacioní standard.
 ${ }^{2}$ Vhera e domethénies statistikcee sipas testit jo parametrik Kruskal-Eallis test per k mostra té pavarurn.
 ${ }^{3}$ Numri absolut dhe péruindja sipas kolonave (neè kllapa)
 ${ }^{4}$ Vlera e domethenies statistik cee sipas testit hi katror.

[^12]: ${ }^{4}$ Vlera mesatare \pm deviacioni standard.
 ${ }^{2}$ Vlera e domethenies statistikere sipas testit jo parametrik Mann-Ehitney per dy mostra te pavarura.

[^13]: ${ }^{4}$ Vlera mesatare \pm deviacioni standard.
 ${ }^{2}$ Vlera e domethenies statistikcee sipas testit jo parametrik Marn-Whitney per dy mostra te pavarura.

[^14]: ${ }^{1}$ Vlera mesatare \pm deviacioni standard.
 ${ }^{2}$ Vlera e domethēnies statistikore sipas testit jo parametrik Mann-Ëhitney pêr dy mostra té pavarura.

[^15]: ${ }^{4}$ Vlera mesatare \pm deviacionii standard.
 ${ }^{2}$ Vlera e domethenies statistikcee sipas testit jo parametrik Marn-Ehitney per dy mostra té pavarura.

[^16]: ${ }^{1}$ Vlera mesatare \pm deviacionii standard.
 ${ }^{2}$ Vlera e domethenies statistikore sipas testit jo parametrik Mann-Ehitney per dy mostra te pavarura.

[^17]: ${ }^{4}$ Vlera mesatare \pm deviacioni standard.
 ${ }^{2}$ Vlera e domethenies statistikcee sipas testit jo parametrik Marn-Ehitney per dy mostra te pavarura.

[^18]: ${ }^{1}$ Vlera mesatare \pm deviacionii standard.
 ${ }^{2}$ Vlera e domethenies statistikcee sipas testit jo parametrik Marn-Ehitney pèr dy mostra té pavarura.

[^19]: ${ }^{1}$ Raporti i gjasave (OR) te pranise se KAD tek fêmijet diabetiké kundrejt mungesés se saj, sipas procedurēs sé Regresicnit Logjistik Binar
 ${ }^{2}$ Intervali i besimit 95% (95% CI) per OR.
 ${ }^{3}$ Vlera e domethenies statistikore (vlera e P-bé) sipas testit té Regresionit Logjistik Binar dhe shkallêt e lirise (ne kllapa).
 ${ }^{4}$ Vlera e koeficientit B sipas testit te Regresionit Logjistik Binar, kur variabli i pavarur eshte numerik.

[^20]: ${ }^{4}$ Vlera e koeficientit B sipas testit te Regresionit Logistik Binar, kur variabli i pavarur éshue numerik.
 ${ }^{2}$ Vlera e domethenies statistikere (vlera e P-st) sipas testit te Regresicenit Logistik Binar.

[^21]: ${ }^{1}$ Raporti i gjasave (OR) te pramise se KAD tek fémijet diabetiké kundrejt mungesés se saj, sipas procedures sê Regresicnit Logjistik Binar
 ${ }^{2}$ Intervali i besimit 95\% (95% CI) pér OR.
 ${ }^{3}$ Vlera e domethenies statistikore (vlera e P-sé) sipas testit té Regresionit Logjistik Binar dhe shkallet e lirise (ne kllapa).

[^22]: ${ }^{1}$ Raporti i gjasave (OR) te pranise se KAD tek femijet diabetike kundrejt murgesés sè saj, sipas procedurés sê Regresicnit Logjistik Binar
 ${ }^{2}$ Intervali i besimit 95% (95% CT) per OR.
 ${ }^{3}$ Vlera e domethenies statistikere (vlera e P-st) sipas testit te Regresionit Logistik Binar.

[^23]: ${ }^{1}$ Raporti i gjasave (OR) te pranise se KAD tek femijet diabetike kundrejt murgesés sè saj, sipas procedurês sể Regresicnit Logjistik Binar
 ${ }^{2}$ Intervali i besimit 95% (95% CI) per OR.
 ${ }^{3}$ Vlera e domethenies statistikere (vlera e P-st) sipas testit te Regresionit Logistik Binar.

[^24]: ${ }^{1}$ Raporti i gjasave (OR) tē pranisë së KAD tek fëmijët diabetikë kundrejt mungesës së saj, sipas procedures sę Regresionit Logjistik Binar
 ${ }^{2}$ Intervali i besimit 95% (95% CI) perr OR
 ${ }^{3}$ Vlera e domethenies statistikere (vlera e P-se) sipas testit te Regresicxit Logistik Binar.

[^25]: ${ }^{1}$ Vlera e koeficientit B sipas testit te Regresionit Logistik Binar, kur variabli i pavarur eshute numerik.
 ${ }^{2}$ Vlera e domethenies statistikere (vlera e P-se) sipas testit te Regresionit Logistik Binar.

